Weighted Inertia-Dissipation-Energy Functionals for Semilinear Equations
Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 1, pp. 1-27
We address a global-in-time variational approach to semilinear PDEs of either parabolic or hyperbolic type by means of the so-called Weighted Inertia-Dissipation-Energy (WIDE) functional. In particular, minimizers of the WIDE functional are proved to converge, up to subsequences, to weak solutions of the limiting PDE. This entails the possibility of reformulating the limiting differential problem in terms of convex minimization. The WIDE formalism can be used in order to discuss parameters asymptotics via $\Gamma$-convergence and is extended to some time-discrete situation as well.
@article{BUMI_2013_9_6_1_a0,
author = {Liero, Matthias and Stefanelli, Ulisse},
title = {Weighted {Inertia-Dissipation-Energy} {Functionals} for {Semilinear} {Equations}},
journal = {Bollettino della Unione matematica italiana},
pages = {1--27},
year = {2013},
volume = {Ser. 9, 6},
number = {1},
zbl = {1273.35188},
mrnumber = {3077111},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_1_a0/}
}
TY - JOUR AU - Liero, Matthias AU - Stefanelli, Ulisse TI - Weighted Inertia-Dissipation-Energy Functionals for Semilinear Equations JO - Bollettino della Unione matematica italiana PY - 2013 SP - 1 EP - 27 VL - 6 IS - 1 UR - http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_1_a0/ LA - en ID - BUMI_2013_9_6_1_a0 ER -
Liero, Matthias; Stefanelli, Ulisse. Weighted Inertia-Dissipation-Energy Functionals for Semilinear Equations. Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 1, pp. 1-27. http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_1_a0/