Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2013_9_6_1_a0, author = {Liero, Matthias and Stefanelli, Ulisse}, title = {Weighted {Inertia-Dissipation-Energy} {Functionals} for {Semilinear} {Equations}}, journal = {Bollettino della Unione matematica italiana}, pages = {1--27}, publisher = {mathdoc}, volume = {Ser. 9, 6}, number = {1}, year = {2013}, zbl = {1273.35188}, mrnumber = {3077111}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_1_a0/} }
TY - JOUR AU - Liero, Matthias AU - Stefanelli, Ulisse TI - Weighted Inertia-Dissipation-Energy Functionals for Semilinear Equations JO - Bollettino della Unione matematica italiana PY - 2013 SP - 1 EP - 27 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_1_a0/ LA - en ID - BUMI_2013_9_6_1_a0 ER -
%0 Journal Article %A Liero, Matthias %A Stefanelli, Ulisse %T Weighted Inertia-Dissipation-Energy Functionals for Semilinear Equations %J Bollettino della Unione matematica italiana %D 2013 %P 1-27 %V 6 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_1_a0/ %G en %F BUMI_2013_9_6_1_a0
Liero, Matthias; Stefanelli, Ulisse. Weighted Inertia-Dissipation-Energy Functionals for Semilinear Equations. Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 1, pp. 1-27. http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_1_a0/
[1] A variational principle for doubly nonlinear evolution. Appl. Math. Lett., 23, 9 (2010), 1120-1124. | DOI | MR | Zbl
- ,[2] Weighted energy-dissipation functionals for doubly nonlinear evolution. J. Funct. Anal., 260, 9 (2011), 2541-2578. | DOI | MR | Zbl
- ,[3] A dual variational approach to doubly nonlinear equations. In preparation, 2012.
- ,[4] Variational convergence for functions and operators. Pitman (Advanced Publishing Program), Boston, MA, 1984. | MR | Zbl
,[5] $\Gamma$-convergence for beginners. Oxford Lecture Series in Mathematics and its Applications 22. Oxford University Press, 2002. | DOI | MR
,[6] Minimum principles for the trajectories of systems governed by rate problems. J. Mech. Phys. Solids, 56 (2008), 1885-1904. | DOI | MR | Zbl
- ,[7] An introduction to $\Gamma$-convergence. Progress in Nonlinear Differential Equations and their Applications 8. Birkhäuser, 1993. | DOI | MR | Zbl
,[8] Conjectures concerning some evolution problems. Duke Math. J., 81, 1 (1996), 255-268. | DOI | MR | Zbl
,[9] Elliptic regularization and partial regularity for motion by mean curvature, Mem. Amer. Math. Soc., 108 (1994), 520:x+90. | DOI | MR | Zbl
,[10] Fracture paths from front kinetics: relaxation and rate independence. Arch. Ration. Mech. Anal., 193 (2009), 539-583. | DOI | MR | Zbl
- - ,[11] A new minimum principle for Lagrangian Mechanics. J. Nonlinear Sci., to appear, 2012. | DOI | MR | Zbl
- ,[12] Sur certaines équations paraboliques non linéaires. Bull. Soc. Math. France, 93 (1965), 155-175. | fulltext EuDML | MR
,[13] Problèmes aux limites non homogènes et applications, Vol. 1, Dunod, Paris, 1968. | MR
- ,[14] Existence of traveling waves of invasion for Ginzburg-Landau-type problems in infinite cylinders. Arch. Ration. Mech. Anal., 188, 3 (2008), 475-508. | DOI | MR | Zbl
- - ,[15] A class of minimum principles for characterizing the trajectories and the relaxation of dissipative systems. ESAIM Control Optim. Calc. Var., 14, 3 (2008), 494-516. | fulltext EuDML | DOI | MR | Zbl
- ,[16] A discrete variational principle for rate-independent evolution. Adv. Calc. Var., 1, 4 (2008), 399-431. | DOI | MR | Zbl
- ,[17] Weighted energy-dissipation functionals for gradient flows. ESAIM Control Optim. Calc. Var., 17, 1 (2011), 52-85. | fulltext EuDML | DOI | MR | Zbl
- ,[18] Convergence of convex sets and of solutions of variational inequalities. Advances in Math., 3 (1969), 510-585. | DOI | MR | Zbl
,[19] Front propagation in infinite cylinders. I. A variational approach. Commun. Math. Sci., 6, 4 (2008), 799-826. | MR | Zbl
- ,[20] Front propagation in infinite cylinders. II. The sharp reaction zone limit. Calc. Var. Partial Differential Equations, 31, 4 (2008), 521-547. | DOI | MR | Zbl
- ,[21] Weighted energy-dissipation functionals for gradient flows in metric spaces. In preparation, 2011. | DOI | MR
- - - ,[22] A variational principle for gradient flows in metric spaces. C. R. Math. Acad. Sci. Paris, 349 (2011), 1224-1228. | DOI | MR
- - - ,[23] Nonlinear wave equations as limits of convex minimization problems: proof of a conjecture by De Giorgi. Ann. of Math. (2), 175, 3 (2012), 1551- 1574. | DOI | MR | Zbl
- ,[24] A variational view at mean curvature evolution for cartesian surfaces. J. Evol. Equ., 11, 4 (2011), 793-809. | DOI | MR | Zbl
- ,[25] The De Giorgi conjecture on elliptic regularization. Math. Models Meth. Appl. Sci., 21, 6 (2011), 1377-1394. | DOI | MR | Zbl
,