The Immersed Boundary Method for Fluid-Structure Interactions: Mathematical Formulation and Numerical
Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 3, pp. 711-724.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The Immersed Boundary Method (IBM) has been introduced by Peskin in the 70's in order to model and approximate fluid-structure interaction problems related to the blood flow in the heart. The original scheme makes use of finite differences for the discretization of the Navier-Stokes equations. Recently, a finite element formulation has been introduced which has the advantage of handling the presence of the solid (modeled via a Dirac delta function) in a more natural way. In this paper we review the finite element formulation of the IBM focusing, in particular, on the choice of the finite element spaces in order to guarantee a suitable mass conservation. Moreover, we present some links with the fictitious domain method.
@article{BUMI_2012_9_5_3_a9,
     author = {Boffi, Daniele},
     title = {The {Immersed} {Boundary} {Method} for {Fluid-Structure} {Interactions:} {Mathematical} {Formulation} and {Numerical}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {711--724},
     publisher = {mathdoc},
     volume = {Ser. 9, 5},
     number = {3},
     year = {2012},
     zbl = {1290.76060},
     mrnumber = {3051741},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_3_a9/}
}
TY  - JOUR
AU  - Boffi, Daniele
TI  - The Immersed Boundary Method for Fluid-Structure Interactions: Mathematical Formulation and Numerical
JO  - Bollettino della Unione matematica italiana
PY  - 2012
SP  - 711
EP  - 724
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_3_a9/
LA  - en
ID  - BUMI_2012_9_5_3_a9
ER  - 
%0 Journal Article
%A Boffi, Daniele
%T The Immersed Boundary Method for Fluid-Structure Interactions: Mathematical Formulation and Numerical
%J Bollettino della Unione matematica italiana
%D 2012
%P 711-724
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_3_a9/
%G en
%F BUMI_2012_9_5_3_a9
Boffi, Daniele. The Immersed Boundary Method for Fluid-Structure Interactions: Mathematical Formulation and Numerical. Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 3, pp. 711-724. http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_3_a9/

[1] S. Badia - F. Nobile - C. Vergara, Fluid-structure partitioned procedures based on Robin transmission conditions, J. Comput. Phys., 227 (14) (2008), 7027-7051. | DOI | MR | Zbl

[2] S. Badia - A. Quaini - A. Quarteroni, Modular vs. non-modular preconditioners for fluid-structure systems with large added-mass effect, Comput. Methods Appl. Mech. Engrg., 197 (49-50) (2008), 4216-4232. | DOI | MR | Zbl

[3] S. Badia - A. Quaini - A. Quarteroni, Splitting methods based on algebraic factorization for fluid-structure interaction, SIAM J. Sci. Comput., 30 (4) (2008), 1778-1805. | DOI | MR | Zbl

[4] M. Bercovier - O. Pironneau, Error estimates for finite element method solution of the Stokes problem in the primitive variables, Numer. Math., 33 (2) (1979), 211-224. | fulltext EuDML | DOI | MR | Zbl

[5] D. Boffi, Stability of higher order triangular Hood-Taylor methods for the stationary Stokes equations, Math. Models Methods Appl. Sci., 4 (2) (1994), 223-235. | DOI | MR | Zbl

[6] D. Boffi, Three-dimensional finite element methods for the Stokes problem, SIAM J. Numer. Anal., 34 (2) (1997), 664-670. | DOI | MR | Zbl

[7] D. Boffi - N. Cavallini - F. Gardini - L. Gastaldi, Local mass conservation of Stokes finite elements, To appear in J. Sci. Comput. (2011). | DOI | MR | Zbl

[8] D. Boffi - N. Cavallini - L. Gastaldi, Finite element approach to immersed boundary method with different fluid and solid densities, To appear in Math. Models Methods Appl. Sci. (2011). | DOI | MR | Zbl

[9] D. Boffi - N. Cavallini - L. Gastaldi - L. T. Zikatanov, In preparation.

[10] D. Boffi - L. Gastaldi, In preparation.

[11] D. Boffi - L. Gastaldi, A finite element approach for the immersed boundary method, Comput. & Structures, 81 (8-11) (2003), 491-501. In honor of Klaus-Jürgen Bathe. | DOI | MR

[12] D. Boffi - L. Gastaldi - L. Heltai, Numerical stability of the finite element immersed boundary method, Math. Models Methods Appl. Sci., 17 (10) (2007), 1479-1505. | DOI | MR | Zbl

[13] D. Boffi - L. Gastaldi - L. Heltai, On the CFL condition for the finite element immersed boundary method, Comput. 85 (11-14) (2007), 775-783. | DOI | MR

[14] D. Boffi - L. Gastaldi - L. Heltai - Charles S. Peskin, On the hyper-elastic formulation of the immersed boundary method, Comput. Methods Appl. Mech. Engrg., 197 (25-28) (2008), 2210-2231. | DOI | MR | Zbl

[15] A. Brandt - E. O. Livne, Multigrid techniques: 1984 guide with applications to fluid dynamics, volume 67 of Classics in applied mathematics, SIAM, Philadelphia, 2011. | DOI | MR | Zbl

[16] F. Brezzi - M. Fortin, Mixed and hybrid finite element methods, volume 15 of Springer Series in Computational Mathematics, Springer-Verlag, New York, 1991. | DOI | MR | Zbl

[17] P. Causin - J. F. Gerbeau - F. Nobile, Added-mass effect in the design of partitioned algorithms for fluid-structure problems, Comput. Methods Appl. Mech. Engrg., 194, (42-44) (2005), 4506-4527. | DOI | MR | Zbl

[18] D. Chapelle - K.-J. Bathe, The inf-sup test, Comput. & Structures, 47 (4-5) (1993), 537-545. | DOI | MR | Zbl

[19] S. Deparis - M. A. Fernández - L. Formaggia, Acceleration of a fixed point algorithm for fluid-structure interaction using transpiration conditions, M2AN Math. Model. Numer. Anal., 37 (4) (2003), 601-616. | fulltext EuDML | DOI | MR | Zbl

[20] L. FORMAGGIA - A. QUARTERONI - A. VENEZIANI, editors, Cardiovascular mathematics, volume 1, of MS&A. Modeling, Simulation and Applications, Springer-Verlag Italia, Milan, 2009. Modeling and simulation of the circulatory system. | DOI | MR | Zbl

[21] V. Girault - R. Glowinski - T. W. Pan, A fictitious-domain method with distributed multiplier for the Stokes problem, In Applied nonlinear analysis, pages 159-174. Kluwer/Plenum, New York, 1999. | MR | Zbl

[22] R. Glowinski - T.-W. Pan - J. Périaux, A fictitious domain method for Dirichlet problem and applications, Comput. Methods Appl. Mech. Engrg., 111 (3-4) (1994), 283-303. | DOI | MR

[23] R. Glowinski - T. W. Pan - J. Périaux, Distributed Lagrange multiplier methods for incompressible viscous flow around moving rigid bodies, Comput. Methods Appl. Mech. Engrg., 151 (1-2) (1998), 181-194. Symposium on Advances in Computational Mechanics, Vol. 3 (Austin, TX, 1997). | DOI | MR | Zbl

[24] R. Glowinski - J. Périaux - T.-W. Pan, Fictitious domain method for the Dirichlet problem and its generalization to some flow problems, In Finite elements in fluids, Part I, II (Barcelona, 1993), pages 347-368, Centro Internac. Métodos Numér. Ing., (Barcelona, 1993). | MR | Zbl

[25] P. M. Gresho - R. L. Lee - S. T. Chan - J. M. Leone, A new finite element for Boussinesq fluids. In Pro. Third Int. Conf. on Finite Elements in Flow Problems, pages 204-215. Wiley, New York, 1980. | Zbl

[26] D. F. Griffiths, The effect of pressure approximation on finite element calculations of compressible flows. In Numerical Methods for Fluid Dynamics, pages 359-374. Academic Press, Morton, K. W. and Baines, M. J. edition, 1982.

[27] G. Guidoboni - R. Glowinski - N. Cavallini - S. Canic, Stable loosely-coupled-type algorithm for fluid-structure interaction in blood flow, J. Comput. Phys., 228 (18) (2009), 6916-6937. | DOI | MR | Zbl

[28] L. Heltai, On the Stability of the Finite Element Immersed Boundary Method, Comput. & Structures, 86 (7-8) (2008), 598-617.

[29] P. Le Tallec - J. Mouro, Fluid structure interaction with large structural displacements, Comput. Methods Appl. Mech. Engrg., 190 (24-25) (2001), 3039-3067. | Zbl

[30] H. G. Matthies - R. Niekamp - J. Steindorf, Algorithms for strong coupling procedures, Comput. Methods Appl. Mech. Engrg., 195, (17-18) (2006), 2028-2049. | DOI | MR | Zbl

[31] H. G. Matthies - J. Steindorf, Partitioned strong coupling algorithms for fluidstructure interaction, Comput. Struct., 81 (2003), 1277-1286.

[32] HENRI J.-P. Morand - Roger Ohayon, Interactions fluides-structures, volume 23 of Recherches en Mathématiques Appliquées [Research in Applied Mathematics], Masson, Paris, 1992. | MR | Zbl

[33] C. S. Peskin, Numerical analysis of blood flow in the heart, J. Computational Phys., 25, (3) (1977), 220-252. | DOI | MR | Zbl

[34] C. S. Peskin, The immersed boundary method, Acta Numer., 11 (2002), 479-517. | DOI | MR | Zbl

[35] C. S. Peskin - D. M. Mcqueen, A three-dimensional computational method for blood flow in the heart. I. Immersed elastic fibers in a viscous incompressible fluid, J. Comput. Phys., 81 (2) (1989), 372-405. | DOI | MR | Zbl

[36] R. Pierre, Local mass conservation and $C^0$-discretizations of the Stokes problem, Houston J. Math., 20 (1) (1994), 115-127. | MR | Zbl

[37] J. Qin - S. Zhang, Stability of the finite elements $9=(4c + 1)$ and $9=5c$ for stationary Stokes equations, Comput. 84 (1-2) (2005), 70-77. | DOI | MR

[38] L. R. Scott - M. Vogelius, Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials, RAIRO Modél. Math. Anal. Numér., 19 (1) (1985), 111-143. | fulltext EuDML | DOI | MR | Zbl

[39] C. Taylor - P. Hood, A numerical solution of the Navier-Stokes equations using the finite element technique, Internat. J. Comput. 1 (1) (1973), 73-100. | DOI | MR | Zbl

[40] R. W. Thatcher, Locally mass-conserving Taylor-Hood elements for two- and three-dimensional flow, Internat. J. Numer. Methods Fluids, 11 (3) (1990), 341-353. | DOI | MR | Zbl

[41] D. M. Tidd - R. W. Thatcher - A. Kaye, The free surface flow of Newtonian and non-Newtonian fluids trapped by surface tension, Internat. J. Numer. Methods Fluids, 8 (9) (1988), 1011-1027. | DOI | MR