Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2012_9_5_3_a8, author = {Terracini, Susanna}, title = {Le traiettorie paraboliche della meccanica celeste come transizioni di fase minimali}, journal = {Bollettino della Unione matematica italiana}, pages = {689--710}, publisher = {mathdoc}, volume = {Ser. 9, 5}, number = {3}, year = {2012}, zbl = {1282.70029}, mrnumber = {3051740}, language = {it}, url = {http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_3_a8/} }
TY - JOUR AU - Terracini, Susanna TI - Le traiettorie paraboliche della meccanica celeste come transizioni di fase minimali JO - Bollettino della Unione matematica italiana PY - 2012 SP - 689 EP - 710 VL - 5 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_3_a8/ LA - it ID - BUMI_2012_9_5_3_a8 ER -
Terracini, Susanna. Le traiettorie paraboliche della meccanica celeste come transizioni di fase minimali. Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 3, pp. 689-710. http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_3_a8/
[1] On the singularities of generalized solutions to n-body-type problems, Int. Math. Res. Not. IMRN (2008). | DOI | MR | Zbl
- - ,[2] Entire Minimal Parabolic Trajectories: the planar anisotropic Kepler problem, Arch. Ration. Mech. Anal., to appear (2011). | DOI | MR | Zbl
- - ,[3] Entire Parabolic Trajectories as Minimal Phase Transitions, preprint (2011). | DOI | MR | Zbl
- - ,[4] Closed geodesics for the Jacobi metric and periodic solutions of prescribed energy of natural Hamiltonian systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 401-412. | fulltext EuDML | MR | Zbl
,[5] Sur certaines trajectoires du problème des n corps, Bulletin Astronomique, 35 (1918), 321-389.
,[6] Sur l'allure du mouvement dans le problème de trois corps quand le temps crois indèfinimment, Ann. Sci. Ec. Norm. Sup., 39 (1922), 29-130. | fulltext EuDML | MR | Zbl
,[7] Action-minimizing orbits in the parallelogram four-body problem with equal masses, Arch. Ration. Mech. Anal., 158 (2001), 293-318. | DOI | MR | Zbl
,[8] Existence and minimizing properties of retrograde orbits to the three-body problem with various choices of masses, Ann. of Math. (2), 167 (2008), 325-348. | DOI | MR | Zbl
,[9] Variational constructions for some satellite orbits in periodic gravitational force fields, Amer. J. Math., 132 (2010), 681-709. | DOI | MR | Zbl
,[10] Collisions totales, mouvements complètement paraboliques et réduction des homothéties dans le problème des n corps, Regul. Chaotic Dyn., 3 (1998), 93-106. | DOI | MR | Zbl
,[11] A remarkable periodic solution of the three-body problem in the case of equal masses, Ann. of Math. (2), 152 (2000). | fulltext EuDML | DOI | MR | Zbl
- ,[12] The planetary N-body problem: Symplectic foliation, reductions and invariant tori, Invent. Math. (2011). | DOI | MR | Zbl
- ,[13] Regularity properties of solutions to the basic problem in the calculus of variations, Trans. Amer. Math. Soc., 289 (1985), 73-98. | DOI | MR | Zbl
- ,[14] On the free time minimizers of the newtonian n-body problem, Math. Proc. Cambridge Philos. Soc., to appear (2011). | DOI | MR | Zbl
- ,[15] Collision orbits in the anisotropic Kepler problem, Invent. Math., 45 (1978), 221-251. | fulltext EuDML | DOI | MR | Zbl
,[16] Singularities in classical mechanical systems, in Ergodic theory and dynamical systems, I (College Park, Md., 1979-80), vol. 10 of Progr. Math., Birkhäuser Boston, Mass., 1981, 211-333. | MR
,[17] Weak Kam Theorem in Lagrangian Dynamics, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 2007.
,[18] Weak KAM theorem on non compact manifolds, NoDEA Nonlinear Differential Equations Appl., 14 (2007), 1-27. | DOI | MR
- ,[19] Existence of $C^1$C1 critical subsolutions of the Hamilton-Jacobi equation, Invent. Math., 155 (2004), 363-388. | DOI | MR | Zbl
- ,[20] Symmetry groups and non-planar collisionless action-minimizing solutions of the three-body problem in three-dimensional space, Arch. Ration. Mech. Anal., 179 (2006), 389-412. | DOI | MR | Zbl
,[21] Transitive decomposition of symmetry groups for the n-body problem, Adv. Math., 213 (2007), 763-784. | DOI | MR | Zbl
,[22] On the dihedral n-body problem, Nonlinearity, 21 (2008), 1307-1321. | DOI | MR | Zbl
- ,[23] On the existence of collisionless equivariant minimizers for the classical n-body problem, Invent. Math., 155 (2004), 305-362. | DOI | MR | Zbl
- ,[24] Platonic polyhedra, topological constraints and periodic solutions of the classical N-body problem, Invent. Math., 185 (2011), 283-332. | DOI | MR | Zbl
- - ,[25] Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc., 204 (1975), 113-135. | DOI | MR | Zbl
,[26] A minimizing property of Keplerian orbits, Amer. J. Math., 99 (1977), 961-971. | DOI | MR | Zbl
,[27] The anisotropic Kepler problem in two dimensions, J. Mathematical Phys., 14 (1973), 139-152. | DOI | MR
,[28] Bernoulli sequences and trajectories in the anisotropic Kepler problem, J. Mathematical Phys., 18 (1977), 806-823. | DOI | MR
,[29] Dynamics and bifurcations, vol. 3 of Texts in Applied Mathematics, Springer-Verlag, New York, 1991. | DOI | MR
- ,[30] On the manifolds of total collapse orbits and of completely parabolic orbits for the n-body problem, J. Differential Equations, 41 (1981), 27-43. | DOI | MR | Zbl
- ,[31] Classical planar scattering by coulombic potentials, Lecture Notes in Physics Monographs, Springer-Verlag, Berlin, 1992. | MR | Zbl
- ,[32] The n-centre problem of celestial mechanics for large energies, J. Eur. Math. Soc. (JEMS), 4 (2002), 1-114. | fulltext EuDML | DOI | MR | Zbl
,[33] Sur la régularisation du problème des trois corps, Acta Math., 42 (1920), 99-144. | DOI | MR | Zbl
,[34] Globally minimizing parabolic motions in the Newtonian N-body problem, Arch. Ration. Mech. Anal., 194 (2009), 283-313. | DOI | MR | Zbl
- ,[35] On weak kam theory for N-body problems, Ergod. Th. & Dynam. Sys., to appear (2011). | DOI | MR
,[36] How the method of minimization of action avoids singularities, Celestial Mech. Dynam. Astronom., 83 (2002), 325-353. | DOI | MR | Zbl
,[37] On the final evolution of the n-body problem, J. Differential Equations, 20 (1976), 150-186. | DOI | MR | Zbl
- ,[38] Triple collision in the collinear three-body problem, Invent. Math., 27 (1974), 191-227. | fulltext EuDML | DOI | MR | Zbl
,[39] Chaotic dynamics near triple collision, Arch. Rational Mech. Anal., 107 (1989), 37-69. | DOI | MR | Zbl
,[40] Braids in Classical Dynamics, Phys. Rev. Lett., 70, no. 24 (1993), 3675-3679. | DOI | MR | Zbl
,[41] Regularization of Kepler's problem and the averaging method on a manifold, Comm. Pure. Appl. Math., 23 (1970), 609-636. | DOI | MR | Zbl
,[42] The behavior of gravitational systems, J. Math. Mech., 17 (1967/1968), 601-611. | DOI | MR | Zbl
,[43] Celestial mechanics, Mathematical Association of America, Washington, D. C., 1976. | MR | Zbl
,[44] Expanding gravitational systems, Trans. Amer. Math. Soc., 156 (1971), 219-240. | DOI | MR | Zbl
,[45] The manifold structure for collision and for hyperbolic-parabolic orbits in the n-body problem, J. Differential Equations, 55 (1984), 300-329. | DOI | MR | Zbl
,[46] Multiple symmetric periodic solutions to the 2n-body problem with equal masses, Nonlinearity, 19 (2006), 2441-2453. | DOI | MR | Zbl
,[47] Minimizing periodic orbits with regularizable collisions in the n-body problem, Arch. Ration. Mech. Anal., 199 (2011), 821-841. | DOI | MR | Zbl
,[48] Symmetric trajectories for the 2N-body problem with equal masses, Arch. Ration. Mech. Anal., 184 (2007), 465-493. | DOI | MR | Zbl
- ,[49] Une caractérisation variationelle des solutions de Lagrange du problème plan des trois corps, Comp. Rend. Acad. Sci. Paris, 332, Série I (2001), 641-644. | DOI | MR | Zbl
,[50] A treatise on the analytical dynamics of particles and rigid bodies: With an introduction to the problem of three bodies, 4th ed, Cambridge University Press (New York, 1959), xiv+456. | MR
,[51] Quaternions for regularizing celestial mechanics: the right way, Celestial Mech. Dynam. Astronom., 102 (2008), 149-162. | DOI | MR | Zbl
,