Le traiettorie paraboliche della meccanica celeste come transizioni di fase minimali
Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 3, pp. 689-710.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Quanto segue è il testo della conferenza plenaria che ho tenuto al XVIII Congresso dell'Unione Matematica Italiana, in cui ho esposto il contenuto di due lavori in collaborazione con V. Barutello e G. Verzini ([2, 3]). In tali lavori si è sviluppato l'approccio variazionale alle traiettorie paraboliche della Meccanica Celeste, che connettono due configurazioni centrali minimali.
@article{BUMI_2012_9_5_3_a8,
     author = {Terracini, Susanna},
     title = {Le traiettorie paraboliche della meccanica celeste come transizioni di fase minimali},
     journal = {Bollettino della Unione matematica italiana},
     pages = {689--710},
     publisher = {mathdoc},
     volume = {Ser. 9, 5},
     number = {3},
     year = {2012},
     zbl = {1282.70029},
     mrnumber = {3051740},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_3_a8/}
}
TY  - JOUR
AU  - Terracini, Susanna
TI  - Le traiettorie paraboliche della meccanica celeste come transizioni di fase minimali
JO  - Bollettino della Unione matematica italiana
PY  - 2012
SP  - 689
EP  - 710
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_3_a8/
LA  - it
ID  - BUMI_2012_9_5_3_a8
ER  - 
%0 Journal Article
%A Terracini, Susanna
%T Le traiettorie paraboliche della meccanica celeste come transizioni di fase minimali
%J Bollettino della Unione matematica italiana
%D 2012
%P 689-710
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_3_a8/
%G it
%F BUMI_2012_9_5_3_a8
Terracini, Susanna. Le traiettorie paraboliche della meccanica celeste come transizioni di fase minimali. Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 3, pp. 689-710. http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_3_a8/

[1] V. Barutello - D. L. Ferrario - S. Terracini, On the singularities of generalized solutions to n-body-type problems, Int. Math. Res. Not. IMRN (2008). | DOI | MR | Zbl

[2] V. Barutello - S. Terracini - G. Verzini, Entire Minimal Parabolic Trajectories: the planar anisotropic Kepler problem, Arch. Ration. Mech. Anal., to appear (2011). | DOI | MR | Zbl

[3] V. Barutello - S. Terracini - G. Verzini, Entire Parabolic Trajectories as Minimal Phase Transitions, preprint (2011). | DOI | MR | Zbl

[4] V. Benci, Closed geodesics for the Jacobi metric and periodic solutions of prescribed energy of natural Hamiltonian systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 401-412. | fulltext EuDML | MR | Zbl

[5] J. Chazy, Sur certaines trajectoires du problème des n corps, Bulletin Astronomique, 35 (1918), 321-389.

[6] J. Chazy, Sur l'allure du mouvement dans le problème de trois corps quand le temps crois indèfinimment, Ann. Sci. Ec. Norm. Sup., 39 (1922), 29-130. | fulltext EuDML | MR | Zbl

[7] K.-C. Chen, Action-minimizing orbits in the parallelogram four-body problem with equal masses, Arch. Ration. Mech. Anal., 158 (2001), 293-318. | DOI | MR | Zbl

[8] K.-C. Chen, Existence and minimizing properties of retrograde orbits to the three-body problem with various choices of masses, Ann. of Math. (2), 167 (2008), 325-348. | DOI | MR | Zbl

[9] K.-C. Chen, Variational constructions for some satellite orbits in periodic gravitational force fields, Amer. J. Math., 132 (2010), 681-709. | DOI | MR | Zbl

[10] A. Chenciner, Collisions totales, mouvements complètement paraboliques et réduction des homothéties dans le problème des n corps, Regul. Chaotic Dyn., 3 (1998), 93-106. | DOI | MR | Zbl

[11] A. Chenciner - R. Montgomery, A remarkable periodic solution of the three-body problem in the case of equal masses, Ann. of Math. (2), 152 (2000). | fulltext EuDML | DOI | MR | Zbl

[12] L. Chierchia - G. Pinzari, The planetary N-body problem: Symplectic foliation, reductions and invariant tori, Invent. Math. (2011). | DOI | MR | Zbl

[13] F. H. Clarke - R. B. Vinter, Regularity properties of solutions to the basic problem in the calculus of variations, Trans. Amer. Math. Soc., 289 (1985), 73-98. | DOI | MR | Zbl

[14] A. Da Luz - E. Maderna, On the free time minimizers of the newtonian n-body problem, Math. Proc. Cambridge Philos. Soc., to appear (2011). | DOI | MR | Zbl

[15] R. L. Devaney, Collision orbits in the anisotropic Kepler problem, Invent. Math., 45 (1978), 221-251. | fulltext EuDML | DOI | MR | Zbl

[16] R. L. Devaney, Singularities in classical mechanical systems, in Ergodic theory and dynamical systems, I (College Park, Md., 1979-80), vol. 10 of Progr. Math., Birkhäuser Boston, Mass., 1981, 211-333. | MR

[17] A. Fathi, Weak Kam Theorem in Lagrangian Dynamics, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 2007.

[18] A. Fathi - E. Maderna, Weak KAM theorem on non compact manifolds, NoDEA Nonlinear Differential Equations Appl., 14 (2007), 1-27. | DOI | MR

[19] A. Fathi - A. Siconolfi, Existence of $C^1$C1 critical subsolutions of the Hamilton-Jacobi equation, Invent. Math., 155 (2004), 363-388. | DOI | MR | Zbl

[20] D. L. Ferrario, Symmetry groups and non-planar collisionless action-minimizing solutions of the three-body problem in three-dimensional space, Arch. Ration. Mech. Anal., 179 (2006), 389-412. | DOI | MR | Zbl

[21] D. L. Ferrario, Transitive decomposition of symmetry groups for the n-body problem, Adv. Math., 213 (2007), 763-784. | DOI | MR | Zbl

[22] D. L. Ferrario - A. Portaluri, On the dihedral n-body problem, Nonlinearity, 21 (2008), 1307-1321. | DOI | MR | Zbl

[23] D. L. Ferrario - S. Terracini, On the existence of collisionless equivariant minimizers for the classical n-body problem, Invent. Math., 155 (2004), 305-362. | DOI | MR | Zbl

[24] G. Fusco - G. F. Gronchi - P. Negrini, Platonic polyhedra, topological constraints and periodic solutions of the classical N-body problem, Invent. Math., 185 (2011), 283-332. | DOI | MR | Zbl

[25] W. B. Gordon, Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc., 204 (1975), 113-135. | DOI | MR | Zbl

[26] W. B. Gordon, A minimizing property of Keplerian orbits, Amer. J. Math., 99 (1977), 961-971. | DOI | MR | Zbl

[27] M. C. Gutzwiller, The anisotropic Kepler problem in two dimensions, J. Mathematical Phys., 14 (1973), 139-152. | DOI | MR

[28] M. C. Gutzwiller, Bernoulli sequences and trajectories in the anisotropic Kepler problem, J. Mathematical Phys., 18 (1977), 806-823. | DOI | MR

[29] J. K. Hale - H. Koçak, Dynamics and bifurcations, vol. 3 of Texts in Applied Mathematics, Springer-Verlag, New York, 1991. | DOI | MR

[30] N. D. Hulkower - D. G. Saari, On the manifolds of total collapse orbits and of completely parabolic orbits for the n-body problem, J. Differential Equations, 41 (1981), 27-43. | DOI | MR | Zbl

[31] M. Klein - A. Knauf, Classical planar scattering by coulombic potentials, Lecture Notes in Physics Monographs, Springer-Verlag, Berlin, 1992. | MR | Zbl

[32] A. Knauf, The n-centre problem of celestial mechanics for large energies, J. Eur. Math. Soc. (JEMS), 4 (2002), 1-114. | fulltext EuDML | DOI | MR | Zbl

[33] T. Levi-Civita, Sur la régularisation du problème des trois corps, Acta Math., 42 (1920), 99-144. | DOI | MR | Zbl

[34] E. Maderna - A. Venturelli, Globally minimizing parabolic motions in the Newtonian N-body problem, Arch. Ration. Mech. Anal., 194 (2009), 283-313. | DOI | MR | Zbl

[35] E. Maderna, On weak kam theory for N-body problems, Ergod. Th. & Dynam. Sys., to appear (2011). | DOI | MR

[36] C. Marchal, How the method of minimization of action avoids singularities, Celestial Mech. Dynam. Astronom., 83 (2002), 325-353. | DOI | MR | Zbl

[37] C. Marchal - D. G. Saari, On the final evolution of the n-body problem, J. Differential Equations, 20 (1976), 150-186. | DOI | MR | Zbl

[38] R. Mcgehee, Triple collision in the collinear three-body problem, Invent. Math., 27 (1974), 191-227. | fulltext EuDML | DOI | MR | Zbl

[39] R. Moeckel, Chaotic dynamics near triple collision, Arch. Rational Mech. Anal., 107 (1989), 37-69. | DOI | MR | Zbl

[40] C. Moore, Braids in Classical Dynamics, Phys. Rev. Lett., 70, no. 24 (1993), 3675-3679. | DOI | MR | Zbl

[41] J. Moser, Regularization of Kepler's problem and the averaging method on a manifold, Comm. Pure. Appl. Math., 23 (1970), 609-636. | DOI | MR | Zbl

[42] H. Pollard, The behavior of gravitational systems, J. Math. Mech., 17 (1967/1968), 601-611. | DOI | MR | Zbl

[43] H. Pollard, Celestial mechanics, Mathematical Association of America, Washington, D. C., 1976. | MR | Zbl

[44] D. G. Saari, Expanding gravitational systems, Trans. Amer. Math. Soc., 156 (1971), 219-240. | DOI | MR | Zbl

[45] D. G. Saari, The manifold structure for collision and for hyperbolic-parabolic orbits in the n-body problem, J. Differential Equations, 55 (1984), 300-329. | DOI | MR | Zbl

[46] M. Shibayama, Multiple symmetric periodic solutions to the 2n-body problem with equal masses, Nonlinearity, 19 (2006), 2441-2453. | DOI | MR | Zbl

[47] M. Shibayama, Minimizing periodic orbits with regularizable collisions in the n-body problem, Arch. Ration. Mech. Anal., 199 (2011), 821-841. | DOI | MR | Zbl

[48] S. Terracini - A. Venturelli, Symmetric trajectories for the 2N-body problem with equal masses, Arch. Ration. Mech. Anal., 184 (2007), 465-493. | DOI | MR | Zbl

[49] A. Venturelli, Une caractérisation variationelle des solutions de Lagrange du problème plan des trois corps, Comp. Rend. Acad. Sci. Paris, 332, Série I (2001), 641-644. | DOI | MR | Zbl

[50] E. T. Whittaker, A treatise on the analytical dynamics of particles and rigid bodies: With an introduction to the problem of three bodies, 4th ed, Cambridge University Press (New York, 1959), xiv+456. | MR

[51] J. Waldvogel, Quaternions for regularizing celestial mechanics: the right way, Celestial Mech. Dynam. Astronom., 102 (2008), 149-162. | DOI | MR | Zbl