Heat Flow and Calculus on Metric Measure Spaces with Ricci Curvature Bounded Below - the Compact Case
Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 3, pp. 575-629.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

@article{BUMI_2012_9_5_3_a5,
     author = {Ambrosio, Luigi and Gigli, Nicola and Savar\`e, Giuseppe},
     title = {Heat {Flow} and {Calculus} on {Metric} {Measure} {Spaces} with {Ricci} {Curvature} {Bounded} {Below} - the {Compact} {Case}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {575--629},
     publisher = {mathdoc},
     volume = {Ser. 9, 5},
     number = {3},
     year = {2012},
     zbl = {1288.58016},
     mrnumber = {3051737},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_3_a5/}
}
TY  - JOUR
AU  - Ambrosio, Luigi
AU  - Gigli, Nicola
AU  - Savarè, Giuseppe
TI  - Heat Flow and Calculus on Metric Measure Spaces with Ricci Curvature Bounded Below - the Compact Case
JO  - Bollettino della Unione matematica italiana
PY  - 2012
SP  - 575
EP  - 629
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_3_a5/
LA  - en
ID  - BUMI_2012_9_5_3_a5
ER  - 
%0 Journal Article
%A Ambrosio, Luigi
%A Gigli, Nicola
%A Savarè, Giuseppe
%T Heat Flow and Calculus on Metric Measure Spaces with Ricci Curvature Bounded Below - the Compact Case
%J Bollettino della Unione matematica italiana
%D 2012
%P 575-629
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_3_a5/
%G en
%F BUMI_2012_9_5_3_a5
Ambrosio, Luigi; Gigli, Nicola; Savarè, Giuseppe. Heat Flow and Calculus on Metric Measure Spaces with Ricci Curvature Bounded Below - the Compact Case. Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 3, pp. 575-629. http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_3_a5/

[1] L. Ambrosio - N. Gigli, User's guide to optimal transport theory, to appear. | DOI | MR

[2] L. Ambrosio - N. Gigli - A. Mondino - G. Savaré - T. Rajala, work in progress (2012).

[3] L. Ambrosio - N. Gigli - G. Savaré, Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, second ed., 2008. | MR | Zbl

[4] L. Ambrosio - N. Gigli - G. Savaré, Calculus and heat flow in metric measure spaces and applications to spaces with ricci bounds from below, Arxiv 1106.2090, (2011), 1-74. | MR

[5] L. Ambrosio - N. Gigli - G. Savaré , Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces, Arxiv 1111.3730, (2011), 1-28. | DOI | MR

[6] L. Ambrosio - N. Gigli - G. Savaré , Metric measure spaces with Riemannian Ricci curvature bounded from below, Arxiv 1109.0222, (2011), 1-60. | DOI | MR

[7] L. Ambrosio - T. Rajala, Slopes of Kantorovich potentials and existence of optimal transport maps in metric measure spaces, To appear on Ann. Mat. Pura Appl. (2012). | DOI | MR

[8] H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Publishing Co., Amsterdam, 1973. North-Holland Mathematics Studies, No. 5. Notas de Matemática (50). | Zbl

[9] J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal., 9 (1999), 428-517. | DOI | MR | Zbl

[10] S. Daneri - G. Savaré, Eulerian calculus for the displacement convexity in the Wasserstein distance, SIAM J. Math. Anal., 40 (2008), 1104-1122. | DOI | MR | Zbl

[11] M. Fukushima, Dirichlet forms and Markov processes, vol. 23 of North-Holland Mathematical Library, North-Holland Publishing Co., Amsterdam, 1980. | MR | Zbl

[12] N. Gigli, On the heat flow on metric measure spaces: existence, uniqueness and stability, Calc. Var. Partial Differential Equations, 39 (2010), 101-120. | DOI | MR | Zbl

[13] N. Gigli, On the differential structure of metric measure spaces and applications, Submitted paper, (2012). | DOI | MR | Zbl

[14] N. Gigli, Optimal maps in non branching spaces with Ricci curvature bounded from below, To appear on Geom. Funct. Anal., (2012). | DOI | MR | Zbl

[15] N. Gigli - K. Kuwada - S. Ohta, Heat flow on Alexandrov spaces, To appear on Comm. Pure Appl. Math., (2012). | DOI | MR

[16] N. Gigli - S.-I. Ohta, First variation formula in Wasserstein spaces over compact Alexandrov spaces, To appear on Canad. Math. Bull. | DOI | MR | Zbl

[17] J. Heinonen, Nonsmooth calculus, Bull. Amer. Math. Soc. (N.S.), 44 (2007), 163-232. | DOI | MR

[18] J. Heinonen - P. Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math., 181 (1998), 1-61. | DOI | MR | Zbl

[19] J. Heinonen - P. Koskela, A note on Lipschitz functions, upper gradients, and the Poincaré inequality, New Zealand J. Math., 28 (1999), 37-42. | MR | Zbl

[20] P. Koskela - P. Macmanus, Quasiconformal mappings and Sobolev spaces, Studia Math., 131 (1998), 1-17. | fulltext EuDML | MR | Zbl

[21] K. Kuwada, Duality on gradient estimates and wasserstein controls, Journal of Functional Analysis, 258 (2010), 3758-3774. | DOI | MR | Zbl

[22] S. Lisini, Characterization of absolutely continuous curves in Wasserstein spaces, Calc. Var. Partial Differential Equations, 28 (2007), 85-120. | DOI | MR | Zbl

[23] J. Lott - C. Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. (2), 169 (2009), 903-991. | DOI | MR | Zbl

[24] S.-I. Ohta, Finsler interpolation inequalities, Calc. Var. Partial Differential Equations, 36 (2009), 211-249. | DOI | MR

[25] S.-I. Ohta, Gradient flows on Wasserstein spaces over compact Alexandrov spaces, Amer. J. Math., 131 (2009), 475-516. | DOI | MR | Zbl

[26] S.-I. Ohta - K.-T. Sturm, Heat flow on Finsler manifolds, Comm. Pure Appl. Math., 62 (2009), 1386-1433. | DOI | MR | Zbl

[27] A. Petrunin, Alexandrov meets lott-villani-sturm, arXiv:1003.5948v1, (2010). | MR | Zbl

[28] T. Rajala, Improved geodesics for the reduced curvature-dimension condition in branching metric spaces, Discrete Contin. Dyn. Syst., (2011). to appear. | DOI | MR

[29] G. Savaré , Gradient flows and evolution variational inequalities in metric spaces, In preparation, (2010).

[30] N. Shanmugalingam, Newtonian spaces: an extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoamericana, 16 (2000), 243-279. | fulltext EuDML | DOI | MR | Zbl

[31] K.-T. Sturm, On the geometry of metric measure spaces. I, Acta Math., 196 (2006), 65-131. | DOI | MR

[32] C. Villani, Optimal transport. Old and new, vol. 338 of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 2009. | DOI | MR | Zbl

[33] H.-C. Zhang - X.-P. Zhu, Ricci curvature on Alexandrov spaces and rigidity theorems, Comm. Anal. Geom., 18 (2010), 503-553. | DOI | MR | Zbl