Some Remarks on Vector Potentials for Maxwell's Equations in Space-Time Carnot Groups
Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 2, pp. 337-355.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this paper we prove a $\Gamma$-convergence result for time-depending variational functionals in a space-time Carnot group $\mathbb{R} \times \mathbb{G}$ arising in the study of Maxwell's equations in the group. Indeed, a Carnot groups $\mathbb{G}$ (a connected simply connected nilpotent stratified Lie group) can be endowed with a complex of ``intrinsic'' differential forms that provide the natural setting for a class of ``intrinsic'' Maxwell's equations. Our main results states precisely that a the vector potentials of a solution of Maxwell's equation in $\mathbb{R} \times \mathbb{G}$ is a critical point of a suitable functional that is in turn a $\Gamma$-limit of a sequence of analogous Riemannian functionals.
@article{BUMI_2012_9_5_2_a8,
     author = {Baldi, Annalisa and Franchi, Bruno},
     title = {Some {Remarks} on {Vector} {Potentials} for {Maxwell's} {Equations} in {Space-Time} {Carnot} {Groups}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {337--355},
     publisher = {mathdoc},
     volume = {Ser. 9, 5},
     number = {2},
     year = {2012},
     zbl = {1254.35229},
     mrnumber = {2977252},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a8/}
}
TY  - JOUR
AU  - Baldi, Annalisa
AU  - Franchi, Bruno
TI  - Some Remarks on Vector Potentials for Maxwell's Equations in Space-Time Carnot Groups
JO  - Bollettino della Unione matematica italiana
PY  - 2012
SP  - 337
EP  - 355
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a8/
LA  - en
ID  - BUMI_2012_9_5_2_a8
ER  - 
%0 Journal Article
%A Baldi, Annalisa
%A Franchi, Bruno
%T Some Remarks on Vector Potentials for Maxwell's Equations in Space-Time Carnot Groups
%J Bollettino della Unione matematica italiana
%D 2012
%P 337-355
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a8/
%G en
%F BUMI_2012_9_5_2_a8
Baldi, Annalisa; Franchi, Bruno. Some Remarks on Vector Potentials for Maxwell's Equations in Space-Time Carnot Groups. Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 2, pp. 337-355. http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a8/

[1] A. Baldi - B. Franchi, Differential forms in Carnot groups: a $\Gamma$-convergence approach, Calc. Var. Partial Differential Equations, 43 (1) (2012), 211-229. | DOI | MR | Zbl

[2] A. Baldi - B. Franchi, Maxwell's equations in anisotropic media and Maxwell's equations in Carnot groups as variational limits, preprinter, 2012.

[3] A. Baldi - B. Franchi - N. Tchou - M. C. Tesi, Compensated compactness for differential forms in Carnot groups and applications, Adv. Math., 223 (5) (2010), 1555-1607. | DOI | MR | Zbl

[4] A. Baldi - B. Franchi - M. C. Tesi, Differential Forms, Maxwell Equations and Compensated Compactness in Carnot Groups, Lecture Notes of Seminario Interdisciplinare di Matematica, 7 (2008), 21-40. | MR

[5] A. Bonfiglioli - E. Lanconelli - F. Uguzzoni, Stratified Lie groups and potential theory for their sub-Laplacians, Springer Monographs in Mathematics, Springer, Berlin, 2007. | MR | Zbl

[6] N. Bourbaki, Éléments de mathématique. XXVI. Groupes et algèbres de Lie. Chapitre 1: Algèbres de Lie, Actualités Sci. Ind. No. 1285. Hermann, Paris, 1960. | MR | Zbl

[7] G. Dal Maso, An introduction to $\Gamma$-convergence, Progress in Nonlinear Differential Equations and their Applications, 8, Birkhäuser Boston Inc., Boston, MA, 1993. | DOI | MR | Zbl

[8] H. Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. | MR

[9] G. B. Folland - E. M. Stein, Hardy spaces on homogeneous groups, volume 28 of Mathematical Notes. Princeton University Press, Princeton, N.J. (1982). | MR

[10] B. Franchi - R. Serapioni - C. F. Serra, On the structure of finite perimeter sets in step 2 Carnot groups, J. Geom. Anal., 13 (3) (2003), 421-466. | DOI | MR | Zbl

[11] B. Franchi - M. C. Tesi, Wave and Maxwell's Equations in Carnot Groups, Commun. Contemp. Math., to appear, | DOI | MR | Zbl

[12] B. Franchi - M. C. Tesi, Faraday's form and Maxwell's equations in the Heisenberg group, Milan J. Math., 77 (2009), 245-270. | DOI | MR | Zbl

[13] M. Grayson - R. Grossman, Models for free nilpotent Lie algebras, J. Algebra, 135 (1) (1990), 177-191. | DOI | MR | Zbl

[14] P. C. Greiner - D. Holcman - Y. Kannai, Wave kernels related to second-order operators, Duke Math. J., 114 (2) (2002), 329-386. | DOI | MR | Zbl

[15] M. Gromov, Carnot-Carathéodory spaces seen from within. In Sub-Riemannian geometry, volume 144 of Progr. Math. (Birkhäuser, Basel, 1996), 79-323. | MR | Zbl

[16] L. Hörmander, Linear partial differential operators, Springer Verlag, Berlin, 1976. | MR

[17] R. Melrose, Propagation for the wave group of a positive subelliptic second-order differential operator. In Hyperbolic equations and related topics (Katata/Kyoto, 1984), Academic Press (Boston, MA, 1986), 181-192. | MR

[18] M. Rumin, Differential geometry on C-C spaces and application to the Novikov-Shubin numbers of nilpotent Lie groups, C. R. Acad. Sci. Paris Sér. I Math., 329 (11) (1999), 985-990. | DOI | MR | Zbl

[19] M. Rumin, Around heat decay on forms and relations of nilpotent Lie groups, In Séminaire de Théorie Spectrale et Géométrie, Vol. 19, Année 2000-2001, volume 19 of Sémin. Théor. Spectr. Géom., pp. 123-164, Univ. Grenoble I, Saint, 2001. | fulltext EuDML | MR | Zbl

[20] S. Semmes, On the nonexistence of bi-Lipschitz parameterizations and geometric problems about AI-weights, Rev. Mat. Iberoamericana, 12 (2) (1996), 337-410. | fulltext EuDML | DOI | MR | Zbl

[21] E. Ventsel - T. Krauthammer, Thin Plates and Shells Theory: Analysis, and Applications, Marcel Dekker, Inc., New York, 2001.