Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2012_9_5_2_a8, author = {Baldi, Annalisa and Franchi, Bruno}, title = {Some {Remarks} on {Vector} {Potentials} for {Maxwell's} {Equations} in {Space-Time} {Carnot} {Groups}}, journal = {Bollettino della Unione matematica italiana}, pages = {337--355}, publisher = {mathdoc}, volume = {Ser. 9, 5}, number = {2}, year = {2012}, zbl = {1254.35229}, mrnumber = {2977252}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a8/} }
TY - JOUR AU - Baldi, Annalisa AU - Franchi, Bruno TI - Some Remarks on Vector Potentials for Maxwell's Equations in Space-Time Carnot Groups JO - Bollettino della Unione matematica italiana PY - 2012 SP - 337 EP - 355 VL - 5 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a8/ LA - en ID - BUMI_2012_9_5_2_a8 ER -
%0 Journal Article %A Baldi, Annalisa %A Franchi, Bruno %T Some Remarks on Vector Potentials for Maxwell's Equations in Space-Time Carnot Groups %J Bollettino della Unione matematica italiana %D 2012 %P 337-355 %V 5 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a8/ %G en %F BUMI_2012_9_5_2_a8
Baldi, Annalisa; Franchi, Bruno. Some Remarks on Vector Potentials for Maxwell's Equations in Space-Time Carnot Groups. Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 2, pp. 337-355. http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a8/
[1] Differential forms in Carnot groups: a $\Gamma$-convergence approach, Calc. Var. Partial Differential Equations, 43 (1) (2012), 211-229. | DOI | MR | Zbl
- ,[2] Maxwell's equations in anisotropic media and Maxwell's equations in Carnot groups as variational limits, preprinter, 2012.
- ,[3] Compensated compactness for differential forms in Carnot groups and applications, Adv. Math., 223 (5) (2010), 1555-1607. | DOI | MR | Zbl
- - - ,[4] Differential Forms, Maxwell Equations and Compensated Compactness in Carnot Groups, Lecture Notes of Seminario Interdisciplinare di Matematica, 7 (2008), 21-40. | MR
- - ,[5] Stratified Lie groups and potential theory for their sub-Laplacians, Springer Monographs in Mathematics, Springer, Berlin, 2007. | MR | Zbl
- - ,[6] Éléments de mathématique. XXVI. Groupes et algèbres de Lie. Chapitre 1: Algèbres de Lie, Actualités Sci. Ind. No. 1285. Hermann, Paris, 1960. | MR | Zbl
,[7] An introduction to $\Gamma$-convergence, Progress in Nonlinear Differential Equations and their Applications, 8, Birkhäuser Boston Inc., Boston, MA, 1993. | DOI | MR | Zbl
,[8] Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. | MR
,[9] Hardy spaces on homogeneous groups, volume 28 of Mathematical Notes. Princeton University Press, Princeton, N.J. (1982). | MR
- ,[10] On the structure of finite perimeter sets in step 2 Carnot groups, J. Geom. Anal., 13 (3) (2003), 421-466. | DOI | MR | Zbl
- - ,[11] Wave and Maxwell's Equations in Carnot Groups, Commun. Contemp. Math., to appear, | DOI | MR | Zbl
- ,[12] Faraday's form and Maxwell's equations in the Heisenberg group, Milan J. Math., 77 (2009), 245-270. | DOI | MR | Zbl
- ,[13] Models for free nilpotent Lie algebras, J. Algebra, 135 (1) (1990), 177-191. | DOI | MR | Zbl
- ,[14] Wave kernels related to second-order operators, Duke Math. J., 114 (2) (2002), 329-386. | DOI | MR | Zbl
- - ,[15] Carnot-Carathéodory spaces seen from within. In Sub-Riemannian geometry, volume 144 of Progr. Math. (Birkhäuser, Basel, 1996), 79-323. | MR | Zbl
,[16] Linear partial differential operators, Springer Verlag, Berlin, 1976. | MR
,[17] Propagation for the wave group of a positive subelliptic second-order differential operator. In Hyperbolic equations and related topics (Katata/Kyoto, 1984), Academic Press (Boston, MA, 1986), 181-192. | MR
,[18] Differential geometry on C-C spaces and application to the Novikov-Shubin numbers of nilpotent Lie groups, C. R. Acad. Sci. Paris Sér. I Math., 329 (11) (1999), 985-990. | DOI | MR | Zbl
,[19] Around heat decay on forms and relations of nilpotent Lie groups, In Séminaire de Théorie Spectrale et Géométrie, Vol. 19, Année 2000-2001, volume 19 of Sémin. Théor. Spectr. Géom., pp. 123-164, Univ. Grenoble I, Saint, 2001. | fulltext EuDML | MR | Zbl
,[20] On the nonexistence of bi-Lipschitz parameterizations and geometric problems about AI-weights, Rev. Mat. Iberoamericana, 12 (2) (1996), 337-410. | fulltext EuDML | DOI | MR | Zbl
,[21] Thin Plates and Shells Theory: Analysis, and Applications, Marcel Dekker, Inc., New York, 2001.
- ,