Integral Inequalities for the Principal Fundamental System of Solutions of a Homogeneous Sturm-Liouville Equation
Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 2, pp. 423-448.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We consider the equation \begin{equation*} \tag{1} -y''(x) + q(x)y(x) = f(x), \qquad x \in \mathbb{R}, \end{equation*} where $f \in L_{p}(\mathbb{R})$, $p \in [1,\infty]$ ($L_{\infty}(\mathbb{R}) := C(\mathbb{R})$) and \begin{equation*} \tag{2} 0 \leq q \in L_{1}^{\text{loc}}(\mathbb{R}); \qquad \exists a > 0 : \inf_{x \in \mathbb{R}} \int_{x-a}^{x+a} q(t) \, dt > 0, \end{equation*} (Condition (2) guarantees correct solvability of (1) in class $L_{p}(\mathbb{R})$, $p \in [1,\infty]$.) Let $y$ be a solution of (1) in class $L_{p}(\mathbb{R})$, $p \in [1,\infty]$, and $\theta$ some non-negative and continuous function in $\mathbb{R}$. We find minimal additional requirements to $\theta$ under which for a given $p \in [1,\infty]$ there exists an absolute positive constant $c(p)$ such that the following inequality holds: \begin{equation*} \sup_{x \in \mathbb{R}} \theta(x)|y(x)| \leq c(p) \|f\|_{L_{p}(\mathbb{R})} \qquad \forall f \in L_{p}(\mathbb{R}). \end{equation*}
@article{BUMI_2012_9_5_2_a13,
     author = {Chernyavskaya, N. A. and Shuster, L. A.},
     title = {Integral {Inequalities} for the {Principal} {Fundamental} {System} of {Solutions} of a {Homogeneous} {Sturm-Liouville} {Equation}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {423--448},
     publisher = {mathdoc},
     volume = {Ser. 9, 5},
     number = {2},
     year = {2012},
     zbl = {1260.34063},
     mrnumber = {2977257},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a13/}
}
TY  - JOUR
AU  - Chernyavskaya, N. A.
AU  - Shuster, L. A.
TI  - Integral Inequalities for the Principal Fundamental System of Solutions of a Homogeneous Sturm-Liouville Equation
JO  - Bollettino della Unione matematica italiana
PY  - 2012
SP  - 423
EP  - 448
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a13/
LA  - en
ID  - BUMI_2012_9_5_2_a13
ER  - 
%0 Journal Article
%A Chernyavskaya, N. A.
%A Shuster, L. A.
%T Integral Inequalities for the Principal Fundamental System of Solutions of a Homogeneous Sturm-Liouville Equation
%J Bollettino della Unione matematica italiana
%D 2012
%P 423-448
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a13/
%G en
%F BUMI_2012_9_5_2_a13
Chernyavskaya, N. A.; Shuster, L. A. Integral Inequalities for the Principal Fundamental System of Solutions of a Homogeneous Sturm-Liouville Equation. Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 2, pp. 423-448. http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a13/

[1] N. Chernyavskaya - N. El-Natanov - L. Shuster, Weighted estimates for solutions of a Sturm-Liouville equation in the space $L_1(\mathbb{R})$, to appear in Proc. Royal Soc. Edinburgh. | DOI | MR | Zbl

[2] N. Chernyavskaya - L. Shuster, On the WKB-method, Diff. Uravnenija, 25 (10) (1989), 1826-1829. | MR | Zbl

[3] N. Chernyavskaya - L. Shuster, Estimates for the Green function of a general Sturm- Liouville operator and their applications, Proc. Amer. Math. Soc., 127 (1999), 1413-1426. | DOI | MR | Zbl

[4] N. Chernyavskaya - L. Shuster, Asymptotics on the diagonal of the Green function of a Sturm-Liouville operator and its applications, J. of London Math. Soc., 61 (2) (2000), 506-530. | DOI | MR | Zbl

[5] N. Chernyavskaya - L. Shuster, A criterion for correct solvability of the Sturm-Liouvile equation in $L_p(\mathbb{R})$; Proc. Amer. Math. Soc., 130 (4) (2002), 1043-1054. | DOI | MR | Zbl

[6] N. Chernyavskaya - L. Shuster, Classification of initial data for the Riccati equation, Bollettino dela Unione Matematica Italiana, 8, 5-B (2002), 511-525. | fulltext bdim | fulltext EuDML | MR | Zbl

[7] N. Chernyavskaya - L. Shuster, Conditions for correct solvability of a simplest singular boundary value problem of general form, I, Z. Anal. Anwend., 25 (2006), 205-235. | DOI | MR | Zbl

[8] N. Chernyavskaya - L. Shuster, An asymptotic majorant for solutions of Sturm- Liouville equations in $L_p(\mathbb{R})$, Proc. Edinb. Math. Soc., 50 (2007), 87-114. | DOI | MR | Zbl

[9] N. Chernyavskaya - L. Shuster, Davies-Harrell representations, Otelbaev's inequalities and properties of solutions of Riccati equations, J. Math. Anal. Appl., 334 (2007), 998-1021. | DOI | MR | Zbl

[10] N. Chernyavskaya - L. Shuster, A criterion for correct solvability in $L_p(\mathbb{R})$ of a general Sturm-Liouville equation, J. London Math. Soc. (2), 80 (2009), 99-120. | DOI | MR | Zbl

[11] N. Chernyavskaya - L. Shuster, Weight estimates for solutions of linear singular differential equations of the first order and the Everitt-Giertz problem, Advances in Differential Equations, to appear. | MR | Zbl

[12] R. Courant, Partial Differential Equations, John Wiley & Sons, New York, 1962. | MR | Zbl

[13] E. B. Davies - E. M. Harrell, Conformally flat Riemannian metrices, Schrödinger operators and semi-classical approximation, J. Diff. Eq., 66 (2) (1987), 165-188. | DOI | MR

[14] K. Mynbaev - M. Otelbaev, Weighted Function Spaces and the Spectrum of Differential Operators, Nauka, Moscow, 1988. | MR | Zbl

[15] R. Oinarov, Properties of a Sturm-Liouville operator in $L_p$, Izvestiya Akad. Nauk Kazakh. SSR, 1 (1990), 43-47. | MR

[16] M. Otelbaev, On smoothness of solutions of differential equations, Izv. Akad. Nauk Kazah. SSR, 5 (1977), 45-48. | MR

[17] M. Otelbaev, A criterion for the resolvent of a Sturm-Liouville operator to be a kernel, Math. Notes, 25 (1979), 296-297. | MR | Zbl