Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2012_9_5_2_a13, author = {Chernyavskaya, N. A. and Shuster, L. A.}, title = {Integral {Inequalities} for the {Principal} {Fundamental} {System} of {Solutions} of a {Homogeneous} {Sturm-Liouville} {Equation}}, journal = {Bollettino della Unione matematica italiana}, pages = {423--448}, publisher = {mathdoc}, volume = {Ser. 9, 5}, number = {2}, year = {2012}, zbl = {1260.34063}, mrnumber = {2977257}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a13/} }
TY - JOUR AU - Chernyavskaya, N. A. AU - Shuster, L. A. TI - Integral Inequalities for the Principal Fundamental System of Solutions of a Homogeneous Sturm-Liouville Equation JO - Bollettino della Unione matematica italiana PY - 2012 SP - 423 EP - 448 VL - 5 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a13/ LA - en ID - BUMI_2012_9_5_2_a13 ER -
%0 Journal Article %A Chernyavskaya, N. A. %A Shuster, L. A. %T Integral Inequalities for the Principal Fundamental System of Solutions of a Homogeneous Sturm-Liouville Equation %J Bollettino della Unione matematica italiana %D 2012 %P 423-448 %V 5 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a13/ %G en %F BUMI_2012_9_5_2_a13
Chernyavskaya, N. A.; Shuster, L. A. Integral Inequalities for the Principal Fundamental System of Solutions of a Homogeneous Sturm-Liouville Equation. Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 2, pp. 423-448. http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a13/
[1] Weighted estimates for solutions of a Sturm-Liouville equation in the space $L_1(\mathbb{R})$, to appear in Proc. Royal Soc. Edinburgh. | DOI | MR | Zbl
- - ,[2] On the WKB-method, Diff. Uravnenija, 25 (10) (1989), 1826-1829. | MR | Zbl
- ,[3] Estimates for the Green function of a general Sturm- Liouville operator and their applications, Proc. Amer. Math. Soc., 127 (1999), 1413-1426. | DOI | MR | Zbl
- ,[4] Asymptotics on the diagonal of the Green function of a Sturm-Liouville operator and its applications, J. of London Math. Soc., 61 (2) (2000), 506-530. | DOI | MR | Zbl
- ,[5] A criterion for correct solvability of the Sturm-Liouvile equation in $L_p(\mathbb{R})$; Proc. Amer. Math. Soc., 130 (4) (2002), 1043-1054. | DOI | MR | Zbl
- ,[6] Classification of initial data for the Riccati equation, Bollettino dela Unione Matematica Italiana, 8, 5-B (2002), 511-525. | fulltext bdim | fulltext EuDML | MR | Zbl
- ,[7] Conditions for correct solvability of a simplest singular boundary value problem of general form, I, Z. Anal. Anwend., 25 (2006), 205-235. | DOI | MR | Zbl
- ,[8] An asymptotic majorant for solutions of Sturm- Liouville equations in $L_p(\mathbb{R})$, Proc. Edinb. Math. Soc., 50 (2007), 87-114. | DOI | MR | Zbl
- ,[9] Davies-Harrell representations, Otelbaev's inequalities and properties of solutions of Riccati equations, J. Math. Anal. Appl., 334 (2007), 998-1021. | DOI | MR | Zbl
- ,[10] A criterion for correct solvability in $L_p(\mathbb{R})$ of a general Sturm-Liouville equation, J. London Math. Soc. (2), 80 (2009), 99-120. | DOI | MR | Zbl
- ,[11] Weight estimates for solutions of linear singular differential equations of the first order and the Everitt-Giertz problem, Advances in Differential Equations, to appear. | MR | Zbl
- ,[12] Partial Differential Equations, John Wiley & Sons, New York, 1962. | MR | Zbl
,[13] Conformally flat Riemannian metrices, Schrödinger operators and semi-classical approximation, J. Diff. Eq., 66 (2) (1987), 165-188. | DOI | MR
- ,[14] Weighted Function Spaces and the Spectrum of Differential Operators, Nauka, Moscow, 1988. | MR | Zbl
- ,[15] Properties of a Sturm-Liouville operator in $L_p$, Izvestiya Akad. Nauk Kazakh. SSR, 1 (1990), 43-47. | MR
,[16] On smoothness of solutions of differential equations, Izv. Akad. Nauk Kazah. SSR, 5 (1977), 45-48. | MR
,[17] A criterion for the resolvent of a Sturm-Liouville operator to be a kernel, Math. Notes, 25 (1979), 296-297. | MR | Zbl
,