Integral Inequalities for the Principal Fundamental System of Solutions of a Homogeneous Sturm-Liouville Equation
Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 2, pp. 423-448

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We consider the equation \begin{equation*} \tag{1} -y''(x) + q(x)y(x) = f(x), \qquad x \in \mathbb{R}, \end{equation*} where $f \in L_{p}(\mathbb{R})$, $p \in [1,\infty]$ ($L_{\infty}(\mathbb{R}) := C(\mathbb{R})$) and \begin{equation*} \tag{2} 0 \leq q \in L_{1}^{\text{loc}}(\mathbb{R}); \qquad \exists a > 0 : \inf_{x \in \mathbb{R}} \int_{x-a}^{x+a} q(t) \, dt > 0, \end{equation*} (Condition (2) guarantees correct solvability of (1) in class $L_{p}(\mathbb{R})$, $p \in [1,\infty]$.) Let $y$ be a solution of (1) in class $L_{p}(\mathbb{R})$, $p \in [1,\infty]$, and $\theta$ some non-negative and continuous function in $\mathbb{R}$. We find minimal additional requirements to $\theta$ under which for a given $p \in [1,\infty]$ there exists an absolute positive constant $c(p)$ such that the following inequality holds: \begin{equation*} \sup_{x \in \mathbb{R}} \theta(x)|y(x)| \leq c(p) \|f\|_{L_{p}(\mathbb{R})} \qquad \forall f \in L_{p}(\mathbb{R}). \end{equation*}
@article{BUMI_2012_9_5_2_a13,
     author = {Chernyavskaya, N. A. and Shuster, L. A.},
     title = {Integral {Inequalities} for the {Principal} {Fundamental} {System} of {Solutions} of a {Homogeneous} {Sturm-Liouville} {Equation}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {423--448},
     publisher = {mathdoc},
     volume = {Ser. 9, 5},
     number = {2},
     year = {2012},
     zbl = {1260.34063},
     mrnumber = {2977257},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a13/}
}
TY  - JOUR
AU  - Chernyavskaya, N. A.
AU  - Shuster, L. A.
TI  - Integral Inequalities for the Principal Fundamental System of Solutions of a Homogeneous Sturm-Liouville Equation
JO  - Bollettino della Unione matematica italiana
PY  - 2012
SP  - 423
EP  - 448
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a13/
LA  - en
ID  - BUMI_2012_9_5_2_a13
ER  - 
%0 Journal Article
%A Chernyavskaya, N. A.
%A Shuster, L. A.
%T Integral Inequalities for the Principal Fundamental System of Solutions of a Homogeneous Sturm-Liouville Equation
%J Bollettino della Unione matematica italiana
%D 2012
%P 423-448
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a13/
%G en
%F BUMI_2012_9_5_2_a13
Chernyavskaya, N. A.; Shuster, L. A. Integral Inequalities for the Principal Fundamental System of Solutions of a Homogeneous Sturm-Liouville Equation. Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 2, pp. 423-448. http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a13/