Three-Dimensional Paracontact Walker Structures
Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 2, pp. 387-403.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We investigate paracontact metric three-manifolds equipped with an associated Walker metric. Some interesting paracontact metric properties are studied for the paracontact Walker structures introduced in [10], also clarifying their relationships with some curvature properties. Moreover, improving the result on [4] on locally symmetric Walker three-manifolds, we show that homogeneity conditions give some obstructions to the existence of compatible paracontact structures on a Walker three-manifold.
@article{BUMI_2012_9_5_2_a11,
     author = {Calvaruso, G.},
     title = {Three-Dimensional {Paracontact} {Walker} {Structures}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {387--403},
     publisher = {mathdoc},
     volume = {Ser. 9, 5},
     number = {2},
     year = {2012},
     zbl = {1264.53036},
     mrnumber = {2977255},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a11/}
}
TY  - JOUR
AU  - Calvaruso, G.
TI  - Three-Dimensional Paracontact Walker Structures
JO  - Bollettino della Unione matematica italiana
PY  - 2012
SP  - 387
EP  - 403
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a11/
LA  - en
ID  - BUMI_2012_9_5_2_a11
ER  - 
%0 Journal Article
%A Calvaruso, G.
%T Three-Dimensional Paracontact Walker Structures
%J Bollettino della Unione matematica italiana
%D 2012
%P 387-403
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a11/
%G en
%F BUMI_2012_9_5_2_a11
Calvaruso, G. Three-Dimensional Paracontact Walker Structures. Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 2, pp. 387-403. http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a11/

[1] D. E. Blair - T. Koufogiorgos - R. Sharma, A classification of 3-dimensional contact metric manifolds with $Q\phi = \phi Q$, Kodai Math. J. 13 (1990), 391-401. | DOI | MR

[2] G. Calvaruso, Homogeneous structures on three-dimensional Lorentzian manifolds, J. Geom. Phys., 57 (2007), 1279-1291. Addendum: J. Geom. Phys., 58 (2008), 291-292. | DOI | MR | Zbl

[3] G. Calvaruso, Einstein-like metrics on three-dimensional homogeneous Lorentzian manifolds, Geom. Dedicata, 127 (2007), 99-119. | DOI | MR | Zbl

[4] G. Calvaruso, Homogeneous paracontact metric three-manifolds, Illinois J. Math., to appear. | MR | Zbl

[5] G. Calvaruso - B. De Leo, Semi-symmetric Lorentzian three-manifolds admitting a parallel degenerate line field, Mediterr. J. Math., 7 (2010), 89-100. | DOI | MR | Zbl

[6] G. Calvaruso - O. Kowalski, On the Ricci operator of locally homogeneous Lorentzian 3-manifolds, Central Eur. J. Math (1), 7 (2009), 124-139. | fulltext EuDML | DOI | MR | Zbl

[7] G. Calvaruso - D. Perrone, Contact pseudo-metric manifolds, Diff. Geom. Appl., 28 (2010), 615-634. | DOI | MR | Zbl

[8] M. Chaichi - E. García-Río - M. E. Vázquez-Abal, Three-dimensional Lorentz manifolds admitting a parallel null vector field, J. Phys. A: Math. Gen., 38 (2005), 841-850. | DOI | MR | Zbl

[9] L. A. Cordero - P. E. Parker, Left-invariant Lorentzian metrics on 3-dimensional Lie groups, Rend. Mat. Serie VII, 17 (1997), 129-155. | MR | Zbl

[10] E. García-Río - A. Haji-Badali - M. E. Vázquez-Abal - R. Vázquez-Lorenzo, On the local geometry of three-dimensional Walker metrics, Advances in Lorentzian Geometry 77-87, Shaker Verlag, Aachen, 2008. | MR | Zbl

[11] S. Kaneyuki - M. Konzai, Paracomplex structures and affine symmetric spaces, Tokyo J. Math., 8 (1985), 301-318. | DOI | MR

[12] S. Kaneyuki - F.L. Williams, Almost paracontact and paraHodge structures on manifolds, Nagoya Math. J., 99 (1985), 173-187. | DOI | MR | Zbl

[13] P. Libermann, Sur les structures presque paracomplexes, C. R. Acad. Sci. Paris, 234 (1952), 2517-2519. | MR | Zbl

[14] B. O'Neill, Semi-Riemannian Geometry, New York: Academic Press, 1983. | MR

[15] S. Rahmani, Métriques de Lorentz sur les groupes de Lie unimodulaires de dimension trois, J. Geom. Phys., 9 (1992), 295-302. | DOI | MR | Zbl

[16] A. G. Walker, Canonical form for a Riemannian space with a parallel field of null planes, Quart. J. Math. Oxford, 1 (1950), 69-79. | DOI | MR | Zbl

[17] S. Zamkovoy, Canonical connections on paracontact manifolds, Ann. Glob. Anal. Geom., 36 (2009), 37-60. | DOI | MR | Zbl