Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2012_9_5_2_a11, author = {Calvaruso, G.}, title = {Three-Dimensional {Paracontact} {Walker} {Structures}}, journal = {Bollettino della Unione matematica italiana}, pages = {387--403}, publisher = {mathdoc}, volume = {Ser. 9, 5}, number = {2}, year = {2012}, zbl = {1264.53036}, mrnumber = {2977255}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a11/} }
Calvaruso, G. Three-Dimensional Paracontact Walker Structures. Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 2, pp. 387-403. http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a11/
[1] A classification of 3-dimensional contact metric manifolds with $Q\phi = \phi Q$, Kodai Math. J. 13 (1990), 391-401. | DOI | MR
- - ,[2] Homogeneous structures on three-dimensional Lorentzian manifolds, J. Geom. Phys., 57 (2007), 1279-1291. Addendum: J. Geom. Phys., 58 (2008), 291-292. | DOI | MR | Zbl
,[3] Einstein-like metrics on three-dimensional homogeneous Lorentzian manifolds, Geom. Dedicata, 127 (2007), 99-119. | DOI | MR | Zbl
,[4] Homogeneous paracontact metric three-manifolds, Illinois J. Math., to appear. | MR | Zbl
,[5] Semi-symmetric Lorentzian three-manifolds admitting a parallel degenerate line field, Mediterr. J. Math., 7 (2010), 89-100. | DOI | MR | Zbl
- ,[6] On the Ricci operator of locally homogeneous Lorentzian 3-manifolds, Central Eur. J. Math (1), 7 (2009), 124-139. | fulltext EuDML | DOI | MR | Zbl
- ,[7] Contact pseudo-metric manifolds, Diff. Geom. Appl., 28 (2010), 615-634. | DOI | MR | Zbl
- ,[8] Three-dimensional Lorentz manifolds admitting a parallel null vector field, J. Phys. A: Math. Gen., 38 (2005), 841-850. | DOI | MR | Zbl
- - ,[9] Left-invariant Lorentzian metrics on 3-dimensional Lie groups, Rend. Mat. Serie VII, 17 (1997), 129-155. | MR | Zbl
- ,[10] On the local geometry of three-dimensional Walker metrics, Advances in Lorentzian Geometry 77-87, Shaker Verlag, Aachen, 2008. | MR | Zbl
- - - ,[11] Paracomplex structures and affine symmetric spaces, Tokyo J. Math., 8 (1985), 301-318. | DOI | MR
- ,[12] Almost paracontact and paraHodge structures on manifolds, Nagoya Math. J., 99 (1985), 173-187. | DOI | MR | Zbl
- ,[13] Sur les structures presque paracomplexes, C. R. Acad. Sci. Paris, 234 (1952), 2517-2519. | MR | Zbl
,[14] Semi-Riemannian Geometry, New York: Academic Press, 1983. | MR
,[15] Métriques de Lorentz sur les groupes de Lie unimodulaires de dimension trois, J. Geom. Phys., 9 (1992), 295-302. | DOI | MR | Zbl
,[16] Canonical form for a Riemannian space with a parallel field of null planes, Quart. J. Math. Oxford, 1 (1950), 69-79. | DOI | MR | Zbl
,[17] Canonical connections on paracontact manifolds, Ann. Glob. Anal. Geom., 36 (2009), 37-60. | DOI | MR | Zbl
,