Weak $L^\infty$ and BMO in Metric Spaces
Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 2, pp. 369-385.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Bennett, DeVore and Sharpley introduced the space weak $L^{\infty}$ in 1981 and studied its relationship with functions of bounded mean oscillation. Here we characterize the weak $L^{\infty}$ in measure spaces without using the decreasing rearrangement of a function. Instead, we use exponential estimates for the distribution function. In addition, we consider a localized version of the characterization that leads to a new characterization of BMO.
@article{BUMI_2012_9_5_2_a10,
     author = {Aalto, Daniel},
     title = {Weak $L^\infty$ and {BMO} in {Metric} {Spaces}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {369--385},
     publisher = {mathdoc},
     volume = {Ser. 9, 5},
     number = {2},
     year = {2012},
     zbl = {1256.46013},
     mrnumber = {2977254},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a10/}
}
TY  - JOUR
AU  - Aalto, Daniel
TI  - Weak $L^\infty$ and BMO in Metric Spaces
JO  - Bollettino della Unione matematica italiana
PY  - 2012
SP  - 369
EP  - 385
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a10/
LA  - en
ID  - BUMI_2012_9_5_2_a10
ER  - 
%0 Journal Article
%A Aalto, Daniel
%T Weak $L^\infty$ and BMO in Metric Spaces
%J Bollettino della Unione matematica italiana
%D 2012
%P 369-385
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a10/
%G en
%F BUMI_2012_9_5_2_a10
Aalto, Daniel. Weak $L^\infty$ and BMO in Metric Spaces. Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 2, pp. 369-385. http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a10/

[1] D. Aalto - J. Kinnunen, The discrete maximal operator in metric spaces, J. Anal. Math., 111 (2010). | DOI | MR | Zbl

[2] J. Bastero - M. Milman - B. F. J. Ruiz, A note on $L(\infty ,q)$ spaces and Sobolev embeddings, Indiana Univ. Math. J., 52, 5 (2003), 1215-1230. | DOI | MR | Zbl

[3] C. Bennett - R. A. Devore - R. Sharpley, Weak-$L^{\infty}$ and BMO, Ann. of Math. (2), 113 (1981), 601-611. | DOI | MR

[4] C. Bennett - R. Sharpley, Interpolation of operators, vol. 129 of Pure and Applied Mathematics, Academic Press Inc. (Boston, MA, 1988). | MR | Zbl

[5] F. Chiarenza - M. Frasca, Morrey spaces and Hardy-Littlewood maximal function, Rend. Mat. Appl. (7), 7 (1987), 3-4 (1988), 273-279. | MR | Zbl

[6] R. R. Coifman - G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Mathematics, 242 (Springer-Verlag, Berlin, 1971), Étude de certaines intégrales singulières. | MR | Zbl

[7] J. Heinonen, Lectures on analysis on metric spaces, Universitext (Springer-Verlag, New York, 2001). | DOI | MR | Zbl

[8] A. Korenovskii, Mean oscillations and equimeasurable rearrangements of functions, vol. 4 of Lecture Notes of the Unione Matematica Italiana, (Springer, Berlin, 2007). | DOI | MR | Zbl

[9] P. Macmanus - C. Pérez, Generalized Poincaré inequalities: sharp self-improving properties, Internat. Math. Res. Notices, 2 (1998), 101-116. | DOI | MR

[10] J. Malý - L. Pick, An elementary proof of sharp Sobolev embeddings, Proc. Amer. Math. Soc., 130 (2002), 555-563. | DOI | MR | Zbl

[11] J. Mateu - P. Mattila - A. Nicolau - J. Orobitg, BMO for nondoubling measures, Duke Math. J., 102, 3 (2000), 533-565. | DOI | MR

[12] M. Milman - E. Pustylnik, On sharp higher order Sobolev embeddings, Commun. Contemp. Math., 6, 3 (2004), 495-511. | DOI | MR | Zbl

[13] N. M. Rivière, Interpolation à la Marcinkiewicz, Rev. Un. Mat. Argentina, 25 (1970/71), 363-377. Collection of articles dedicated to Alberto González Domínguez on his sixty-fifth birthday. | MR