Weak $L^\infty$ and BMO in Metric Spaces
Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 2, pp. 369-385

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Bennett, DeVore and Sharpley introduced the space weak $L^{\infty}$ in 1981 and studied its relationship with functions of bounded mean oscillation. Here we characterize the weak $L^{\infty}$ in measure spaces without using the decreasing rearrangement of a function. Instead, we use exponential estimates for the distribution function. In addition, we consider a localized version of the characterization that leads to a new characterization of BMO.
@article{BUMI_2012_9_5_2_a10,
     author = {Aalto, Daniel},
     title = {Weak $L^\infty$ and {BMO} in {Metric} {Spaces}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {369--385},
     publisher = {mathdoc},
     volume = {Ser. 9, 5},
     number = {2},
     year = {2012},
     zbl = {1256.46013},
     mrnumber = {2977254},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a10/}
}
TY  - JOUR
AU  - Aalto, Daniel
TI  - Weak $L^\infty$ and BMO in Metric Spaces
JO  - Bollettino della Unione matematica italiana
PY  - 2012
SP  - 369
EP  - 385
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a10/
LA  - en
ID  - BUMI_2012_9_5_2_a10
ER  - 
%0 Journal Article
%A Aalto, Daniel
%T Weak $L^\infty$ and BMO in Metric Spaces
%J Bollettino della Unione matematica italiana
%D 2012
%P 369-385
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a10/
%G en
%F BUMI_2012_9_5_2_a10
Aalto, Daniel. Weak $L^\infty$ and BMO in Metric Spaces. Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 2, pp. 369-385. http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a10/