The 3-Dimensional Oscillon Equation
Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 1, pp. 19-53.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

On a bounded smooth domain $\Omega \subset \mathbb{R}^{3}$, we consider the generalized oscillon equation \begin{equation*}\partial_{tt} u(x, t) + \omega(t)\partial_{t}u(x, t) - \mu(t)\Delta u(x, t) + V'(u(x, t)) = 0, \qquad x \in \Omega \subset \mathbb{R}^{3}, \ t \in \mathbb{R}\end{equation*} with Dirichlet boundary conditions, where $\omega$ is a time-dependent damping, $\mu$ is a time-dependent squared speed of propagation, and $V$ is a nonlinear potential of critical growth. Under structural assumptions on $\omega$ and $\mu$ we establish the existence of a pullback global attractor $\mathcal{A} = \mathcal{A}(t)$ in the sense of [1]. Under additional assumptions on $\mu$, which include the relevant physical cases, we obtain optimal regularity of the pull-back global attractor and finite-dimensionality of the kernel sections.
@article{BUMI_2012_9_5_1_a1,
     author = {Di Plinio, Francesco and Duane, Gregory S. and Temam, Roger},
     title = {The {3-Dimensional} {Oscillon} {Equation}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {19--53},
     publisher = {mathdoc},
     volume = {Ser. 9, 5},
     number = {1},
     year = {2012},
     zbl = {1256.35155},
     mrnumber = {2919647},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_1_a1/}
}
TY  - JOUR
AU  - Di Plinio, Francesco
AU  - Duane, Gregory S.
AU  - Temam, Roger
TI  - The 3-Dimensional Oscillon Equation
JO  - Bollettino della Unione matematica italiana
PY  - 2012
SP  - 19
EP  - 53
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_1_a1/
LA  - en
ID  - BUMI_2012_9_5_1_a1
ER  - 
%0 Journal Article
%A Di Plinio, Francesco
%A Duane, Gregory S.
%A Temam, Roger
%T The 3-Dimensional Oscillon Equation
%J Bollettino della Unione matematica italiana
%D 2012
%P 19-53
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_1_a1/
%G en
%F BUMI_2012_9_5_1_a1
Di Plinio, Francesco; Duane, Gregory S.; Temam, Roger. The 3-Dimensional Oscillon Equation. Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 1, pp. 19-53. http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_1_a1/

[1] F. Di Plinio - G. S. Duane - R. Temam, Time-dependent attractor for the oscillon equation, Discrete Contin. Dyn. Syst. Ser. A, 29 (2010), 141-167. | DOI | MR | Zbl

[2] F. Di Plinio - V. Pata, Robust exponential attractors for the strongly damped wave equation with memory. II, Russ. J. Math. Phys., 16 (2009), 61.73. | DOI | MR | Zbl

[3] F. Di Plinio - V. Pata - S. Zelik, On the strongly damped wave equation with memory, Indiana Univ. Math. J., 57 (2008), 757-780. | DOI | MR | Zbl

[4] E. Farhi - N. Graham - V. Khemani et al., An oscillon in the SU(2) gauged Higgs model, Phys. Rev. D, 72 (2005), 101701.

[5] E. Farhi - N. Graham - A. H. Guth et al., Emergence of oscillons in an expanding background, Phys. Rev. D, 77 (2008), 085019.

[6] C. Foias - G. Prodi, Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension 2, Rend. Sem. Mat. Univ. Padova, 39 (1967), 1-34. | fulltext EuDML | MR | Zbl

[7] G. Fodor - P. Forgacs - Z. Horvath - A. Lukacs, Small amplitude quasibreathers and oscillons, Phys. Rev. D, 78 (2005), 025003.

[8] G. Fodor - P. Forgacs - M. Mezei, Boson stars and oscillatons in an inflationary universe, Phys. Rev. D, 82 (2010), 044043.

[9] M. Grasselli - V. Pata, On the damped semilinear wave equation with critical exponent, Dynamical Systems and Differential Equations (Wilmington, NC, 2002). Discrete Cont. Dyn. Systems (suppl.) (2003), 351-358. | MR | Zbl

[10] M. Grasselli - V. Pata, Asymptotic behavior of a parabolic-hyperbolic system, Comm. Pure Appl. Anal., 3 (2004), 849-881. | DOI | MR | Zbl

[11] M. P. Hertzberg, Quantum radiation of oscillons, Phys. Rev. D, 82 (2010), 045022.

[12] J.-L. Lions - G. Prodi, Un théorème d'existence et unicité dans les équations de Navier-Stokes en dimension 2, C. R. Acad. Sci. Paris, 248 (1959), 3519-3521. | MR | Zbl

[13] B. B. Mandelbrot, The fractal geometry of nature, W. H. Freeman and Company (San Francisco, 1982). | MR | Zbl

[14] G. Prodi, On probability measures related to the Navier-Stokes equations in the 3-dimensional case, Air Force Res. Div. Conti. A. P., 61 (1961), 414-466.

[15] M. Schroeder, Fractals, chaos, power laws, W. H. Freeman and Company (New York, 1991). | MR

[16] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Springer (New York, 1997). | DOI | MR | Zbl