Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2012_9_5_1_a1, author = {Di Plinio, Francesco and Duane, Gregory S. and Temam, Roger}, title = {The {3-Dimensional} {Oscillon} {Equation}}, journal = {Bollettino della Unione matematica italiana}, pages = {19--53}, publisher = {mathdoc}, volume = {Ser. 9, 5}, number = {1}, year = {2012}, zbl = {1256.35155}, mrnumber = {2919647}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_1_a1/} }
TY - JOUR AU - Di Plinio, Francesco AU - Duane, Gregory S. AU - Temam, Roger TI - The 3-Dimensional Oscillon Equation JO - Bollettino della Unione matematica italiana PY - 2012 SP - 19 EP - 53 VL - 5 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_1_a1/ LA - en ID - BUMI_2012_9_5_1_a1 ER -
Di Plinio, Francesco; Duane, Gregory S.; Temam, Roger. The 3-Dimensional Oscillon Equation. Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 1, pp. 19-53. http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_1_a1/
[1] Time-dependent attractor for the oscillon equation, Discrete Contin. Dyn. Syst. Ser. A, 29 (2010), 141-167. | DOI | MR | Zbl
- - ,[2] Robust exponential attractors for the strongly damped wave equation with memory. II, Russ. J. Math. Phys., 16 (2009), 61.73. | DOI | MR | Zbl
- ,[3] On the strongly damped wave equation with memory, Indiana Univ. Math. J., 57 (2008), 757-780. | DOI | MR | Zbl
- - ,[4] An oscillon in the SU(2) gauged Higgs model, Phys. Rev. D, 72 (2005), 101701.
- - et al.,[5] Emergence of oscillons in an expanding background, Phys. Rev. D, 77 (2008), 085019.
- - et al.,[6] Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension 2, Rend. Sem. Mat. Univ. Padova, 39 (1967), 1-34. | fulltext EuDML | MR | Zbl
- ,[7] Small amplitude quasibreathers and oscillons, Phys. Rev. D, 78 (2005), 025003.
- - - ,[8] Boson stars and oscillatons in an inflationary universe, Phys. Rev. D, 82 (2010), 044043.
- - ,[9] On the damped semilinear wave equation with critical exponent, Dynamical Systems and Differential Equations (Wilmington, NC, 2002). Discrete Cont. Dyn. Systems (suppl.) (2003), 351-358. | MR | Zbl
- ,[10] Asymptotic behavior of a parabolic-hyperbolic system, Comm. Pure Appl. Anal., 3 (2004), 849-881. | DOI | MR | Zbl
- ,[11] Quantum radiation of oscillons, Phys. Rev. D, 82 (2010), 045022.
,[12] Un théorème d'existence et unicité dans les équations de Navier-Stokes en dimension 2, C. R. Acad. Sci. Paris, 248 (1959), 3519-3521. | MR | Zbl
- ,[13] The fractal geometry of nature, W. H. Freeman and Company (San Francisco, 1982). | MR | Zbl
,[14] On probability measures related to the Navier-Stokes equations in the 3-dimensional case, Air Force Res. Div. Conti. A. P., 61 (1961), 414-466.
,[15] Fractals, chaos, power laws, W. H. Freeman and Company (New York, 1991). | MR
,[16] Infinite-dimensional dynamical systems in mechanics and physics, Springer (New York, 1997). | DOI | MR | Zbl
,