Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2011_9_4_3_a8, author = {Visintin, Augusto}, title = {On the {Structural} {Stability} of {Monotone} {Flows} {(Running} head: {Structural} {Stability)}}, journal = {Bollettino della Unione matematica italiana}, pages = {471--479}, publisher = {mathdoc}, volume = {Ser. 9, 4}, number = {3}, year = {2011}, zbl = {1243.49015}, mrnumber = {2906771}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_3_a8/} }
TY - JOUR AU - Visintin, Augusto TI - On the Structural Stability of Monotone Flows (Running head: Structural Stability) JO - Bollettino della Unione matematica italiana PY - 2011 SP - 471 EP - 479 VL - 4 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_3_a8/ LA - en ID - BUMI_2011_9_4_3_a8 ER -
Visintin, Augusto. On the Structural Stability of Monotone Flows (Running head: Structural Stability). Bollettino della Unione matematica italiana, Série 9, Tome 4 (2011) no. 3, pp. 471-479. http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_3_a8/
[1] $\Gamma$-convergenza e G-convergenza per problemi non lineari di tipo ellittico. Boll. Un. Mat. Ital. (5), 13-A (1976), 352-362 | MR | Zbl
- ,[2] Variational Convergence for Functions and Operators. Pitman, Boston 1984 | MR | Zbl
,[3] Un principe variationnel associé à certaines équations paraboliques. I. Le cas indépendant du temps and II. Le cas dépendant du temps. C. R. Acad. Sci. Paris Sér. A-B, 282 (1976), 971-974, and ibid. 1197-1198. | MR | Zbl
- ,[4] An Introduction to $\Gamma$-Convergence. Birkhäuser, Boston 1993. | DOI | MR | Zbl
,[5] Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 58 (1975), 842-850. | MR
- ,[6] Representing monotone operators by convex functions. Workshop/Miniconference on Functional Analysis and Optimization (Canberra, 1988), 59-65, Proc. Centre Math. Anal. Austral. Nat. Univ., 20, Austral. Nat. Univ., Canberra, 1988. | MR | Zbl
,[7] A variational theory for monotone vector fields. J. Fixed Point Theory Appl., 4 (2008), 107-135. | DOI | MR | Zbl
,[8] Selfdual Partial Differential Systems and their Variational Principles. Springer, 2009. | MR | Zbl
,[9] Deux théorèmes de minimum pour certains systèmes dissipatifs. C. R. Acad. Sci. Paris Sér. A-B, 282 (1976). A1035-A1038. | MR | Zbl
,[10] The Brezis-Ekeland principle for doubly nonlinear equations. S.I.A.M. J. Control Optim., 8 (2008), 1615-1642. | DOI | MR | Zbl
,[11] The General Theory of Homogenization. A Personalized Introduction. Springer, Berlin; UMI, Bologna, 2009. | DOI | MR | Zbl
,[12] Extension of the Brezis-Ekeland-Nayroles principle to monotone operators. Adv. Math. Sci. Appl., 18 (2008), 633-650. | MR | Zbl
,[13] Scale-transformations of maximal monotone relations in view of homogenization. Boll. Un. Mat. Ital., (9), III (2010), 591-601. | fulltext bdim | fulltext EuDML | MR
,[14] Homogenization of a parabolic model of ferromagnetism. J. Differential Equations, 250 (2011), 1521-1552. | DOI | MR | Zbl
,[15] Structural stability of doubly nonlinear flows. Boll. Un. Mat. Ital., (9), IV (2011) (in press). | fulltext bdim | MR | Zbl
,[16] Variational formulation and structural stability of monotone equations. (forthcoming). | DOI | MR | Zbl
,