On the Structural Stability of Monotone Flows (Running head: Structural Stability)
Bollettino della Unione matematica italiana, Série 9, Tome 4 (2011) no. 3, pp. 471-479.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Flows of the form $D_tu + \alpha(u) \ni h$, with $\alpha$ maximal monotone, are here formulated as null-minimization problems via Fitzpatrick's theory. By means of De Giorgi's notion of $\Gamma$-convergence, we study the compactness and the structural stability of these flows with respect to variations of the source $h$ and of the operator $\alpha$.
@article{BUMI_2011_9_4_3_a8,
     author = {Visintin, Augusto},
     title = {On the {Structural} {Stability} of {Monotone} {Flows} {(Running} head: {Structural} {Stability)}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {471--479},
     publisher = {mathdoc},
     volume = {Ser. 9, 4},
     number = {3},
     year = {2011},
     zbl = {1243.49015},
     mrnumber = {2906771},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_3_a8/}
}
TY  - JOUR
AU  - Visintin, Augusto
TI  - On the Structural Stability of Monotone Flows (Running head: Structural Stability)
JO  - Bollettino della Unione matematica italiana
PY  - 2011
SP  - 471
EP  - 479
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_3_a8/
LA  - en
ID  - BUMI_2011_9_4_3_a8
ER  - 
%0 Journal Article
%A Visintin, Augusto
%T On the Structural Stability of Monotone Flows (Running head: Structural Stability)
%J Bollettino della Unione matematica italiana
%D 2011
%P 471-479
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_3_a8/
%G en
%F BUMI_2011_9_4_3_a8
Visintin, Augusto. On the Structural Stability of Monotone Flows (Running head: Structural Stability). Bollettino della Unione matematica italiana, Série 9, Tome 4 (2011) no. 3, pp. 471-479. http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_3_a8/

[1] A. Ambrosetti - C. Sbordone, $\Gamma$-convergenza e G-convergenza per problemi non lineari di tipo ellittico. Boll. Un. Mat. Ital. (5), 13-A (1976), 352-362 | MR | Zbl

[2] H. Attouch, Variational Convergence for Functions and Operators. Pitman, Boston 1984 | MR | Zbl

[3] H. Brezis - I. Ekeland, Un principe variationnel associé à certaines équations paraboliques. I. Le cas indépendant du temps and II. Le cas dépendant du temps. C. R. Acad. Sci. Paris Sér. A-B, 282 (1976), 971-974, and ibid. 1197-1198. | MR | Zbl

[4] G. Dal Maso, An Introduction to $\Gamma$-Convergence. Birkhäuser, Boston 1993. | DOI | MR | Zbl

[5] E. De Giorgi - T. Franzon, Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 58 (1975), 842-850. | MR

[6] S. Fitzpatrick, Representing monotone operators by convex functions. Workshop/Miniconference on Functional Analysis and Optimization (Canberra, 1988), 59-65, Proc. Centre Math. Anal. Austral. Nat. Univ., 20, Austral. Nat. Univ., Canberra, 1988. | MR | Zbl

[7] N. Ghoussoub, A variational theory for monotone vector fields. J. Fixed Point Theory Appl., 4 (2008), 107-135. | DOI | MR | Zbl

[8] N. Ghoussoub, Selfdual Partial Differential Systems and their Variational Principles. Springer, 2009. | MR | Zbl

[9] B. Nayroles, Deux théorèmes de minimum pour certains systèmes dissipatifs. C. R. Acad. Sci. Paris Sér. A-B, 282 (1976). A1035-A1038. | MR | Zbl

[10] U. Stefanelli, The Brezis-Ekeland principle for doubly nonlinear equations. S.I.A.M. J. Control Optim., 8 (2008), 1615-1642. | DOI | MR | Zbl

[11] L. Tartar, The General Theory of Homogenization. A Personalized Introduction. Springer, Berlin; UMI, Bologna, 2009. | DOI | MR | Zbl

[12] A. Visintin, Extension of the Brezis-Ekeland-Nayroles principle to monotone operators. Adv. Math. Sci. Appl., 18 (2008), 633-650. | MR | Zbl

[13] A. Visintin, Scale-transformations of maximal monotone relations in view of homogenization. Boll. Un. Mat. Ital., (9), III (2010), 591-601. | fulltext bdim | fulltext EuDML | MR

[14] A. Visintin, Homogenization of a parabolic model of ferromagnetism. J. Differential Equations, 250 (2011), 1521-1552. | DOI | MR | Zbl

[15] A. Visintin, Structural stability of doubly nonlinear flows. Boll. Un. Mat. Ital., (9), IV (2011) (in press). | fulltext bdim | MR | Zbl

[16] A. Visintin, Variational formulation and structural stability of monotone equations. (forthcoming). | DOI | MR | Zbl