A Peculiar Liapunov Functional for Ternary Reaction-Diffusion Dynamical Systems
Bollettino della Unione matematica italiana, Série 9, Tome 4 (2011) no. 3, pp. 393-407.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

A Liapunov functional $W$, depending - together with the temporal derivative $\dot{W}$ along the solutions - on the eigenvalues via the system coefficients, is found. This functional is ``peculiar'' in the sense that $W$ is positive definite and simultaneously $\dot{W}$ is negative definite, if and only if all the eigenvalues have negative real part. An application to a general type of ternary system often encountered in the literature, is furnished.
@article{BUMI_2011_9_4_3_a5,
     author = {Rionero, Salvatore},
     title = {A {Peculiar} {Liapunov} {Functional} for {Ternary} {Reaction-Diffusion} {Dynamical} {Systems}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {393--407},
     publisher = {mathdoc},
     volume = {Ser. 9, 4},
     number = {3},
     year = {2011},
     zbl = {1234.35133},
     mrnumber = {2906768},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_3_a5/}
}
TY  - JOUR
AU  - Rionero, Salvatore
TI  - A Peculiar Liapunov Functional for Ternary Reaction-Diffusion Dynamical Systems
JO  - Bollettino della Unione matematica italiana
PY  - 2011
SP  - 393
EP  - 407
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_3_a5/
LA  - en
ID  - BUMI_2011_9_4_3_a5
ER  - 
%0 Journal Article
%A Rionero, Salvatore
%T A Peculiar Liapunov Functional for Ternary Reaction-Diffusion Dynamical Systems
%J Bollettino della Unione matematica italiana
%D 2011
%P 393-407
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_3_a5/
%G en
%F BUMI_2011_9_4_3_a5
Rionero, Salvatore. A Peculiar Liapunov Functional for Ternary Reaction-Diffusion Dynamical Systems. Bollettino della Unione matematica italiana, Série 9, Tome 4 (2011) no. 3, pp. 393-407. http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_3_a5/

[1] R. S. Cantrell - C. Cosner, Spatial ecology via reaction diffusion equations. Wiley, 2003. | DOI | MR | Zbl

[2] J. N. Flavin - S. Rionero, Qualitative estimates for partial differential equations: an introduction. Boca Raton (FL): CRC Press, 1996. | MR | Zbl

[3] S. Rionero, Stability of ternary reaction-diffusion dynamical system. To appear on ``Rendiconti di Matematica'' of ``Accademia dei Lincei'' issue 3, 2011. | DOI | MR

[4] S. Rionero, A rigorous reduction of the stability of the solutions to a nonlinear binary reaction-diffusion system of P.D.Es. to the stability of the solutions to a linear binary system of O.D.Es. J.M. A. A., vol. 319 (2006), 372-392. | fulltext EuDML | DOI | MR

[5] S. Rionero, Long time behaviour of three competing species and mututalistic communitites. Asymptotic Methods in Nonlinear Wave phenomenon. World Sci., 2007, 171-185. | DOI | MR | Zbl

[6] S. Rionero, On the reducibility of the $L^2$-stability of ternary reaction-diffusion systems of P.D.Es. Proceedings Wascom 2009, World Sci., 2010, 321-331. | DOI | MR | Zbl

[7] D. R. Merkin, Introduction to the theory of stability. Springer texts in Applied Mathematics, vol. 24 (1997). | MR

[8] F. R. Gantmacher, The theory of matrices. Vol I, AMS, 2000. | MR

[9] F. R. Gantmacher, Lezioni di Meccanica analitica, Editori Riuniti, Roma 1980, (Lektsii po analiticeskoj mechanike, Mir, Moscow).

[10] G. Prodi, Teoremi di tipo locale per il sistema di Navier-Stokes e stabilità delle soluzioni stazionarie. Rend. Sem. Mat. Univ. Padova, 32 (1962), 374-397. | fulltext EuDML | MR | Zbl

[11] J. N. Flavin - S. Rionero, Cross-diffusion influence on the nonlinear $L^2$-stability analysis for the Lotka-Volterra reaction-diffusion system of P.D.Es. IMA J.A.M., vol. 72, n. 5 (2007), 540-557. | DOI | MR | Zbl

[12] S. Rionero, $L^2$-energy stability via new dependent variables for circumventing strongly nonlinear reaction terms. Nonlinear Analysis, vol. 70 (2009), 2530-2541. | DOI | MR | Zbl

[13] B. Straughan, The energy method, stability and nonlinear convection. Springer, 2004 (2nd Edit.). | DOI | MR | Zbl

[14] B. Straughan, Stability and wave motion in porous media. Springer, 2008. | MR | Zbl