A Peculiar Liapunov Functional for Ternary Reaction-Diffusion Dynamical Systems
Bollettino della Unione matematica italiana, Série 9, Tome 4 (2011) no. 3, pp. 393-407
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
A Liapunov functional $W$, depending - together with the temporal derivative $\dot{W}$ along the solutions - on the eigenvalues via the system coefficients, is found. This functional is ``peculiar'' in the sense that $W$ is positive definite and simultaneously $\dot{W}$ is negative definite, if and only if all the eigenvalues have negative real part. An application to a general type of ternary system often encountered in the literature, is furnished.
@article{BUMI_2011_9_4_3_a5,
author = {Rionero, Salvatore},
title = {A {Peculiar} {Liapunov} {Functional} for {Ternary} {Reaction-Diffusion} {Dynamical} {Systems}},
journal = {Bollettino della Unione matematica italiana},
pages = {393--407},
publisher = {mathdoc},
volume = {Ser. 9, 4},
number = {3},
year = {2011},
zbl = {1234.35133},
mrnumber = {2906768},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_3_a5/}
}
TY - JOUR AU - Rionero, Salvatore TI - A Peculiar Liapunov Functional for Ternary Reaction-Diffusion Dynamical Systems JO - Bollettino della Unione matematica italiana PY - 2011 SP - 393 EP - 407 VL - 4 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_3_a5/ LA - en ID - BUMI_2011_9_4_3_a5 ER -
Rionero, Salvatore. A Peculiar Liapunov Functional for Ternary Reaction-Diffusion Dynamical Systems. Bollettino della Unione matematica italiana, Série 9, Tome 4 (2011) no. 3, pp. 393-407. http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_3_a5/