Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2011_9_4_3_a5, author = {Rionero, Salvatore}, title = {A {Peculiar} {Liapunov} {Functional} for {Ternary} {Reaction-Diffusion} {Dynamical} {Systems}}, journal = {Bollettino della Unione matematica italiana}, pages = {393--407}, publisher = {mathdoc}, volume = {Ser. 9, 4}, number = {3}, year = {2011}, zbl = {1234.35133}, mrnumber = {2906768}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_3_a5/} }
TY - JOUR AU - Rionero, Salvatore TI - A Peculiar Liapunov Functional for Ternary Reaction-Diffusion Dynamical Systems JO - Bollettino della Unione matematica italiana PY - 2011 SP - 393 EP - 407 VL - 4 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_3_a5/ LA - en ID - BUMI_2011_9_4_3_a5 ER -
Rionero, Salvatore. A Peculiar Liapunov Functional for Ternary Reaction-Diffusion Dynamical Systems. Bollettino della Unione matematica italiana, Série 9, Tome 4 (2011) no. 3, pp. 393-407. http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_3_a5/
[1] Spatial ecology via reaction diffusion equations. Wiley, 2003. | DOI | MR | Zbl
- ,[2] Qualitative estimates for partial differential equations: an introduction. Boca Raton (FL): CRC Press, 1996. | MR | Zbl
- ,[3] Stability of ternary reaction-diffusion dynamical system. To appear on ``Rendiconti di Matematica'' of ``Accademia dei Lincei'' issue 3, 2011. | DOI | MR
,[4] A rigorous reduction of the stability of the solutions to a nonlinear binary reaction-diffusion system of P.D.Es. to the stability of the solutions to a linear binary system of O.D.Es. J.M. A. A., vol. 319 (2006), 372-392. | fulltext EuDML | DOI | MR
,[5] Long time behaviour of three competing species and mututalistic communitites. Asymptotic Methods in Nonlinear Wave phenomenon. World Sci., 2007, 171-185. | DOI | MR | Zbl
,[6] On the reducibility of the $L^2$-stability of ternary reaction-diffusion systems of P.D.Es. Proceedings Wascom 2009, World Sci., 2010, 321-331. | DOI | MR | Zbl
,[7] Introduction to the theory of stability. Springer texts in Applied Mathematics, vol. 24 (1997). | MR
,[8] The theory of matrices. Vol I, AMS, 2000. | MR
,[9] Lezioni di Meccanica analitica, Editori Riuniti, Roma 1980, (Lektsii po analiticeskoj mechanike, Mir, Moscow).
,[10] Teoremi di tipo locale per il sistema di Navier-Stokes e stabilità delle soluzioni stazionarie. Rend. Sem. Mat. Univ. Padova, 32 (1962), 374-397. | fulltext EuDML | MR | Zbl
,[11] Cross-diffusion influence on the nonlinear $L^2$-stability analysis for the Lotka-Volterra reaction-diffusion system of P.D.Es. IMA J.A.M., vol. 72, n. 5 (2007), 540-557. | DOI | MR | Zbl
- ,[12] $L^2$-energy stability via new dependent variables for circumventing strongly nonlinear reaction terms. Nonlinear Analysis, vol. 70 (2009), 2530-2541. | DOI | MR | Zbl
,[13] The energy method, stability and nonlinear convection. Springer, 2004 (2nd Edit.). | DOI | MR | Zbl
,[14] Stability and wave motion in porous media. Springer, 2008. | MR | Zbl
,