Structural Stability of Doubly-Nonlinear Flows
Bollettino della Unione matematica italiana, Série 9, Tome 4 (2011) no. 3, pp. 363-391.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

To any maximal monotone operator $\alpha \colon V \to \mathcal{P}(V)$ ($V$ being a real Banach space),in [MR1009594] S. Fitzpatrick associated a lower semicontinuous and convex function $f \colon V \times V' \to \mathbb{R} \cup \{+\infty\}$ such that \begin{equation*} \tag{*} f(v,v') \geq \langle v', v \rangle \quad \forall (v, v'), \qquad f(v,v') = \langle v', v \rangle \iff v' \in \alpha(v).\end{equation*} On this basis, in this work two classes of doubly-nonlinear evolutionary equations are formulated as minimization principles: \begin{equation*} \tag{**} D_{t}\alpha(u) - \operatorname{div} \vec{\gamma}(\nabla u) \ni h, \qquad \alpha(D_{t}u) - \operatorname{div} \vec{\gamma}(\nabla u) \ni h; \end{equation*} here $\alpha$ and $\vec{\gamma}$ are maximal monotone mappings, and one of them is assumed to be cyclically monotone. For associated initial- and boundary-value problems, existence of a solution is proved, as well as the stability with respect to variations of the data and of the operators $D_{t}$, $\nabla$, $\alpha$ and $\vec{\gamma}$.
@article{BUMI_2011_9_4_3_a4,
     author = {Visintin, Augusto},
     title = {Structural {Stability} of {Doubly-Nonlinear} {Flows}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {363--391},
     publisher = {mathdoc},
     volume = {Ser. 9, 4},
     number = {3},
     year = {2011},
     zbl = {1235.35032},
     mrnumber = {2906767},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_3_a4/}
}
TY  - JOUR
AU  - Visintin, Augusto
TI  - Structural Stability of Doubly-Nonlinear Flows
JO  - Bollettino della Unione matematica italiana
PY  - 2011
SP  - 363
EP  - 391
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_3_a4/
LA  - en
ID  - BUMI_2011_9_4_3_a4
ER  - 
%0 Journal Article
%A Visintin, Augusto
%T Structural Stability of Doubly-Nonlinear Flows
%J Bollettino della Unione matematica italiana
%D 2011
%P 363-391
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_3_a4/
%G en
%F BUMI_2011_9_4_3_a4
Visintin, Augusto. Structural Stability of Doubly-Nonlinear Flows. Bollettino della Unione matematica italiana, Série 9, Tome 4 (2011) no. 3, pp. 363-391. http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_3_a4/

[1] S. Aizicovici - V.-M. Hokkanen, Doubly nonlinear equations with unbounded operators. Nonlinear Anal., 58 (2004), 591-607. | DOI | MR | Zbl

[2] S. Aizicovici - V.-M. Hokkanen, Doubly nonlinear periodic problems with unbounded operators. J. Math. Anal. Appl., 292 (2004), 540-557. | DOI | MR | Zbl

[3] S. Aizicovici - Q. Yan, Convergence theorems for abstract doubly nonlinear differential equations. Panamer. Math. J., 7 (1997), 1-17. | MR | Zbl

[4] G. Akagi, Doubly nonlinear evolution equations governed by time-dependent subdifferentials in reflexive Banach spaces. J. Differential Equations, 231 (2006), 32-56. | DOI | MR | Zbl

[5] H. W. Alt - S. Luckhaus, Quasilinear elliptic-parabolic differential equations. Math. Z., 183 (1983), 311-341. | fulltext EuDML | DOI | MR | Zbl

[6] T. Arai, On the existence of the solution for $\partial \varphi(u'(t)) + \partial \psi(u(t)) \ni f(t)$. J. Fac. Sci. Univ. Tokyo. Sec. IA Math., 26 (1979), 75-96. | MR | Zbl

[7] H. Attouch, Variational Convergence for Functions and Operators. Pitman, Boston 1984. | MR | Zbl

[8] G. Auchmuty, Saddle-points and existence-uniqueness for evolution equations. Differential Integral Equations, 6 (1993), 1161-117. | MR | Zbl

[9] V. Barbu, Existence theorems for a class of two point boundary problems. J. Differential Equations, 17 (1975), 236-257. | DOI | MR | Zbl

[10] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff, Leyden 1976. | MR | Zbl

[11] V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer, Berlin 2010. | DOI | MR | Zbl

[12] D. Blanchard - G. Francfort, Study of a doubly nonlinear heat equation with no growth assumptions on the parabolic term. S.I.A.M. J. Math. Anal., 19 (1988), 1032-1056. | DOI | MR | Zbl

[13] D. Blanchard - G. Francfort, A few results on a class of degenerate parabolic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 18 (1991), 213-249. | fulltext EuDML | MR | Zbl

[14] D. Blanchard - A. Porretta, Stefan problems with nonlinear diffusion and convection. J. Differential Equations, 210 (2005), 383-428. | DOI | MR | Zbl

[15] H. Brezis, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert. North-Holland, Amsterdam 1973. | MR | Zbl

[16] H. Brezis - I. Ekeland, Un principe variationnel associé à certaines équations paraboliques. I. Le cas indépendant du temps and II. Le cas dépendant du temps. C. R. Acad. Sci. Paris Sér. A-B, 282 (1976) 971-974, and ibid. 1197-1198. | MR | Zbl

[17] M. Buliga - G. De Saxcé - C. Vallée, Existence and construction of bipotentials for graphs of multivalued laws. J. Convex Anal., 15 (2008), 87-104. | MR | Zbl

[18] R. S. Burachik - B. F. Svaiter, Maximal monotone operators, convex functions, and a special family of enlargements. Set-Valued Analysis, 10 (2002), 297-316. | DOI | MR | Zbl

[19] R. S. Burachik - B. F. Svaiter, Maximal monotonicity, conjugation and the duality product. Proc. Amer. Math. Soc., 131 (2003), 2379-2383. | DOI | MR | Zbl

[20] J. Carrillo, Entropy solutions for nonlinear degenerate problems. Arch. Ration. Mech. Anal., 147 (1999), 269-361. | DOI | MR | Zbl

[21] J. Carrillo - P. Wittbold, Uniqueness of renormalized solutions of degenerate elliptic-parabolic problems. J. Differential Equations, 156 (1999), 93-121. | DOI | MR | Zbl

[22] P. Colli, On some doubly nonlinear evolution equations in Banach spaces. Japan J. Indust. Appl. Math., 9 (1992), 181-203. | DOI | MR | Zbl

[23] P. Colli - A. Visintin, On a class of doubly nonlinear evolution problems. Communications in P.D.E.s, 15 (1990), 737-756. | DOI | MR | Zbl

[24] G. Dal Maso, An Introduction to $\Gamma$-Convergence. Birkhäuser, Boston 1993. | DOI | MR | Zbl

[25] E. De Giorgi - T. Franzoni, Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 58 (1975), 842-850. | MR

[26] E. Di Benedetto - R. E. Showalter, Implicit degenerate evolution equations and applications. S.I.A.M. J. Math. Anal., 12 (1981), 731-751. | DOI | MR | Zbl

[27] I. Ekeland - R. Temam, Analyse Convexe et Problèmes Variationnelles. Dunod Gauthier-Villars, Paris 1974. | MR

[28] W. Fenchel, Convex Cones, Sets, and Functions. Princeton Univ., 1953. | Zbl

[29] S. Fitzpatrick, Representing monotone operators by convex functions. Workshop/Miniconference on Functional Analysis and Optimization (Canberra, 1988), 59-65, Proc. Centre Math. Anal. Austral. Nat. Univ., 20, Austral. Nat. Univ., Canberra, 1988. | MR | Zbl

[30] H. Gajewski, On a variant of monotonicity and its application to differential equations. Nonlinear Anal., 22 (1994), 73-80. | DOI | MR | Zbl

[31] H. Gajewski - K. Gröger - K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Akademie-Verlag, Berlin 1974. | MR

[32] H. Gajewski - K. Zacharias, Über eine Klasse nichtlinearer Differentialgleichun- gen im Hilbert-Raum. J. Math. Anal. Appl., 44 (1973), 71-87. | DOI | MR

[33] H. Gajewski - K. Zacharias, Über eine weitere Klasse nichtlinearer Differential- gleichungen im Hilbert-Raum. Math. Nachr., 57 (1973), 127-140. | DOI | MR | Zbl

[34] N. Ghoussoub, A variational theory for monotone vector fields. J. Fixed Point Theory Appl., 4 (2008), 107-135. | DOI | MR | Zbl

[35] N. Ghoussoub, Selfdual Partial Differential Systems and their Variational Principles. Springer, 2009. | MR | Zbl

[36] N. Ghoussoub - L. Tzou, A variational principle for gradient flows. Math. Ann., 330 (2004), 519-549. | DOI | MR | Zbl

[37] O. Grange - F. Mignot, Sur la résolution d'une équation et une inéquation paraboliques non linéaires. J. Funct. Anal., 11 (1972), 77-92. | MR | Zbl

[38] K. Groèger - J. Nečas, On a class of nonlinear initial value problems in Hilbert spaces. Math. Nachr., 93 (1979), 21-31. | DOI | MR

[39] N. Igbida - J. M. Urbano, Uniqueness for nonlinear degenerate problems. Nonlinear Differential Equations Appl., 10 (2003), 287-307. | DOI | MR | Zbl

[40] H. Jian, On the homogenization of degenerate parabolic equations. Acta Math. Appl. Sinica, 16 (2000), 100-110. | DOI | MR | Zbl

[41] J.-E. Martinez-Legaz - M. Théra, A convex representation of maximal monotone operators. J. Nonlinear Convex Anal., 2 (2001), 243-247. | MR | Zbl

[42] J.-E. Martinez-Legaz - B. F. Svaiter, Monotone operators representable by l.s.c. convex functions. Set-Valued Anal., 13 (2005), 21-46. | DOI | MR | Zbl

[43] J.-E. Martinez-Legaz - B. F. Svaiter, Minimal convex functions bounded below by the duality product. Proc. Amer. Math. Soc., 136 (2008), 873-878. | DOI | MR | Zbl

[44] A. Mielke, Evolution of rate-independent systems. In: Handbook of Differential Equations: Evolutionary Differential Equations. Vol. II (C. Dafermos and E. Feireisel, eds.). Elsevier/North-Holland, Amsterdam, (2005), 461-559. | MR | Zbl

[45] A. Mielke - F. Theil, On rate-independent hysteresis models. Nonl. Diff. Eqns. Appl., 11 (2004), 151-189. | DOI | MR | Zbl

[46] A. Mielke - F. Theil - V. Levitas, A variational formulation of rate-independent phase transformations using an extremum principle. Arch. Rational Mech. Anal., 162 (2002), 137-177. | DOI | MR | Zbl

[47] I. Müller, A History of Thermodynamics. Springer, Berlin 2007.

[48] F. Murat, Compacité par compensation. Ann. Scuola Norm. Sup. Pisa, 5 (1978), 489-507. | fulltext EuDML | MR | Zbl

[49] A. K. Nandakumaran - M. Rajesh, Homogenization of a nonlinear degenerate parabolic differential equation. Electron. J. Differential Equations, 1 (2001), 19. | fulltext EuDML | MR | Zbl

[50] A. K. Nandakumaran - M. Rajesh, Homogenization of a parabolic equation in perforated domain with Neumann boundary condition. Spectral and inverse spectral theory (Goa, 2000). Proc. Indian Acad. Sci. Math. Sci., 112 (2002), 195-207. | DOI | MR | Zbl

[51] B. Nayroles, Deux théorèmes de minimum pour certains systèmes dissipatifs. C. R. Acad. Sci. Paris Sér. A-B, 282 (1976), A1035-A1038. | MR | Zbl

[52] F. Otto, $L^1$-contraction and uniqueness for unstationary saturated-unsaturated porous media flow. Adv. Math. Sci. Appl., 7 (1997), 537-553. | MR | Zbl

[53] J.-P. Penot, A representation of maximal monotone operators by closed convex functions and its impact on calculus rules. C. R. Math. Acad. Sci. Paris, Ser. I, 338 (2004), 853-858. | DOI | MR | Zbl

[54] J.-P. Penot, The relevance of convex analysis for the study of monotonicity. Nonlinear Anal., 58 (2004), 855-871. | DOI | MR | Zbl

[55] R. Rossi - A. Mielke - G. Savaré , A metric approach to a class of doubly nonlinear evolution equations and applications. Ann. Sc. Norm. Super. Pisa Cl. Sci., 7 (5) (2008), 97-169. | fulltext EuDML | MR | Zbl

[56] T. Roubíček, Nonlinear Partial Differential Equations with Applications. Birkhäuser, Basel 2005. | Zbl

[57] G. Schimperna - A. Segatti - U. Stefanelli, Well-posedness and long-time behavior for a class of doubly nonlinear equations. Discrete Contin. Dyn. Syst., 18 (2007), 15-38. | DOI | MR | Zbl

[58] T. Senba, On some nonlinear evolution equation. Funkcial. Ekvac., 29 (1986), 243-257. | MR | Zbl

[59] J. Simon, Compact sets in the space $L^p(0; T; B)$. Ann. Mat. Pura Appl., 146 (1987), 65-96. | DOI | MR | Zbl

[60] U. Stefanelli, The Brezis-Ekeland principle for doubly nonlinear equations. S.I.A.M. J. Control Optim., 8 (2008), 1615-1642. | DOI | MR | Zbl

[61] L. Tartar, The General Theory of Homogenization. A Personalized Introduction. Springer Berlin; UMI, Bologna, 2009. | DOI | MR | Zbl

[62] A. Visintin, Models of Phase Transitions. Birkhäuser, Boston 1996. | DOI | MR | Zbl

[63] A. Visintin, Extension of the Brezis-Ekeland-Nayroles principle to monotone operators. Adv. Math. Sci. Appl., 18 (2008), 633-650. | MR | Zbl

[64] A. Visintin, Scale-transformations of maximal monotone relations in view of homogenization. Boll. Un. Mat. Ital., III (9) (2010), 591-601. | fulltext bdim | fulltext EuDML | MR

[65] A. Visintin, Homogenization of a parabolic model of ferromagnetism. J. Differential Equations, 250 (2011), 1521-1552. | DOI | MR | Zbl

[66] A. Visintin, Scale-transformations and homogenization of maximal monotone relations, and applications. (forthcoming). | MR | Zbl

[67] A. Visintin, Variational formulation and structural stability of monotone equations. (forthcoming). | DOI | MR | Zbl

[68] A. Visintin, Structural stability of rate-independent nonpotential flows. (forthcoming). | DOI | MR | Zbl