Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2011_9_4_3_a4, author = {Visintin, Augusto}, title = {Structural {Stability} of {Doubly-Nonlinear} {Flows}}, journal = {Bollettino della Unione matematica italiana}, pages = {363--391}, publisher = {mathdoc}, volume = {Ser. 9, 4}, number = {3}, year = {2011}, zbl = {1235.35032}, mrnumber = {2906767}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_3_a4/} }
Visintin, Augusto. Structural Stability of Doubly-Nonlinear Flows. Bollettino della Unione matematica italiana, Série 9, Tome 4 (2011) no. 3, pp. 363-391. http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_3_a4/
[1] Doubly nonlinear equations with unbounded operators. Nonlinear Anal., 58 (2004), 591-607. | DOI | MR | Zbl
- ,[2] Doubly nonlinear periodic problems with unbounded operators. J. Math. Anal. Appl., 292 (2004), 540-557. | DOI | MR | Zbl
- ,[3] Convergence theorems for abstract doubly nonlinear differential equations. Panamer. Math. J., 7 (1997), 1-17. | MR | Zbl
- ,[4] Doubly nonlinear evolution equations governed by time-dependent subdifferentials in reflexive Banach spaces. J. Differential Equations, 231 (2006), 32-56. | DOI | MR | Zbl
,[5] Quasilinear elliptic-parabolic differential equations. Math. Z., 183 (1983), 311-341. | fulltext EuDML | DOI | MR | Zbl
- ,[6] On the existence of the solution for $\partial \varphi(u'(t)) + \partial \psi(u(t)) \ni f(t)$. J. Fac. Sci. Univ. Tokyo. Sec. IA Math., 26 (1979), 75-96. | MR | Zbl
,[7] Variational Convergence for Functions and Operators. Pitman, Boston 1984. | MR | Zbl
,[8] Saddle-points and existence-uniqueness for evolution equations. Differential Integral Equations, 6 (1993), 1161-117. | MR | Zbl
,[9] Existence theorems for a class of two point boundary problems. J. Differential Equations, 17 (1975), 236-257. | DOI | MR | Zbl
,[10] Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff, Leyden 1976. | MR | Zbl
,[11] Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer, Berlin 2010. | DOI | MR | Zbl
,[12] Study of a doubly nonlinear heat equation with no growth assumptions on the parabolic term. S.I.A.M. J. Math. Anal., 19 (1988), 1032-1056. | DOI | MR | Zbl
- ,[13] A few results on a class of degenerate parabolic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 18 (1991), 213-249. | fulltext EuDML | MR | Zbl
- ,[14] Stefan problems with nonlinear diffusion and convection. J. Differential Equations, 210 (2005), 383-428. | DOI | MR | Zbl
- ,[15] Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert. North-Holland, Amsterdam 1973. | MR | Zbl
,[16] Un principe variationnel associé à certaines équations paraboliques. I. Le cas indépendant du temps and II. Le cas dépendant du temps. C. R. Acad. Sci. Paris Sér. A-B, 282 (1976) 971-974, and ibid. 1197-1198. | MR | Zbl
- ,[17] Existence and construction of bipotentials for graphs of multivalued laws. J. Convex Anal., 15 (2008), 87-104. | MR | Zbl
- - ,[18] Maximal monotone operators, convex functions, and a special family of enlargements. Set-Valued Analysis, 10 (2002), 297-316. | DOI | MR | Zbl
- ,[19] Maximal monotonicity, conjugation and the duality product. Proc. Amer. Math. Soc., 131 (2003), 2379-2383. | DOI | MR | Zbl
- ,[20] Entropy solutions for nonlinear degenerate problems. Arch. Ration. Mech. Anal., 147 (1999), 269-361. | DOI | MR | Zbl
,[21] Uniqueness of renormalized solutions of degenerate elliptic-parabolic problems. J. Differential Equations, 156 (1999), 93-121. | DOI | MR | Zbl
- ,[22] On some doubly nonlinear evolution equations in Banach spaces. Japan J. Indust. Appl. Math., 9 (1992), 181-203. | DOI | MR | Zbl
,[23] On a class of doubly nonlinear evolution problems. Communications in P.D.E.s, 15 (1990), 737-756. | DOI | MR | Zbl
- ,[24] An Introduction to $\Gamma$-Convergence. Birkhäuser, Boston 1993. | DOI | MR | Zbl
,[25] Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 58 (1975), 842-850. | MR
- ,[26] Implicit degenerate evolution equations and applications. S.I.A.M. J. Math. Anal., 12 (1981), 731-751. | DOI | MR | Zbl
- ,[27] Analyse Convexe et Problèmes Variationnelles. Dunod Gauthier-Villars, Paris 1974. | MR
- ,[28] Convex Cones, Sets, and Functions. Princeton Univ., 1953. | Zbl
,[29] Representing monotone operators by convex functions. Workshop/Miniconference on Functional Analysis and Optimization (Canberra, 1988), 59-65, Proc. Centre Math. Anal. Austral. Nat. Univ., 20, Austral. Nat. Univ., Canberra, 1988. | MR | Zbl
,[30] On a variant of monotonicity and its application to differential equations. Nonlinear Anal., 22 (1994), 73-80. | DOI | MR | Zbl
,[31] Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Akademie-Verlag, Berlin 1974. | MR
- - ,[32] Über eine Klasse nichtlinearer Differentialgleichun- gen im Hilbert-Raum. J. Math. Anal. Appl., 44 (1973), 71-87. | DOI | MR
- ,[33] Über eine weitere Klasse nichtlinearer Differential- gleichungen im Hilbert-Raum. Math. Nachr., 57 (1973), 127-140. | DOI | MR | Zbl
- ,[34] A variational theory for monotone vector fields. J. Fixed Point Theory Appl., 4 (2008), 107-135. | DOI | MR | Zbl
,[35] Selfdual Partial Differential Systems and their Variational Principles. Springer, 2009. | MR | Zbl
,[36] A variational principle for gradient flows. Math. Ann., 330 (2004), 519-549. | DOI | MR | Zbl
- ,[37] Sur la résolution d'une équation et une inéquation paraboliques non linéaires. J. Funct. Anal., 11 (1972), 77-92. | MR | Zbl
- ,[38] On a class of nonlinear initial value problems in Hilbert spaces. Math. Nachr., 93 (1979), 21-31. | DOI | MR
- ,[39] Uniqueness for nonlinear degenerate problems. Nonlinear Differential Equations Appl., 10 (2003), 287-307. | DOI | MR | Zbl
- ,[40] On the homogenization of degenerate parabolic equations. Acta Math. Appl. Sinica, 16 (2000), 100-110. | DOI | MR | Zbl
,[41] A convex representation of maximal monotone operators. J. Nonlinear Convex Anal., 2 (2001), 243-247. | MR | Zbl
- ,[42] Monotone operators representable by l.s.c. convex functions. Set-Valued Anal., 13 (2005), 21-46. | DOI | MR | Zbl
- ,[43] Minimal convex functions bounded below by the duality product. Proc. Amer. Math. Soc., 136 (2008), 873-878. | DOI | MR | Zbl
- ,[44] Evolution of rate-independent systems. In: Handbook of Differential Equations: Evolutionary Differential Equations. Vol. II (C. Dafermos and E. Feireisel, eds.). Elsevier/North-Holland, Amsterdam, (2005), 461-559. | MR | Zbl
,[45] On rate-independent hysteresis models. Nonl. Diff. Eqns. Appl., 11 (2004), 151-189. | DOI | MR | Zbl
- ,[46] A variational formulation of rate-independent phase transformations using an extremum principle. Arch. Rational Mech. Anal., 162 (2002), 137-177. | DOI | MR | Zbl
- - ,[47] A History of Thermodynamics. Springer, Berlin 2007.
,[48] Compacité par compensation. Ann. Scuola Norm. Sup. Pisa, 5 (1978), 489-507. | fulltext EuDML | MR | Zbl
,[49] Homogenization of a nonlinear degenerate parabolic differential equation. Electron. J. Differential Equations, 1 (2001), 19. | fulltext EuDML | MR | Zbl
- ,[50] Homogenization of a parabolic equation in perforated domain with Neumann boundary condition. Spectral and inverse spectral theory (Goa, 2000). Proc. Indian Acad. Sci. Math. Sci., 112 (2002), 195-207. | DOI | MR | Zbl
- ,[51] Deux théorèmes de minimum pour certains systèmes dissipatifs. C. R. Acad. Sci. Paris Sér. A-B, 282 (1976), A1035-A1038. | MR | Zbl
,[52] $L^1$-contraction and uniqueness for unstationary saturated-unsaturated porous media flow. Adv. Math. Sci. Appl., 7 (1997), 537-553. | MR | Zbl
,[53] A representation of maximal monotone operators by closed convex functions and its impact on calculus rules. C. R. Math. Acad. Sci. Paris, Ser. I, 338 (2004), 853-858. | DOI | MR | Zbl
,[54] The relevance of convex analysis for the study of monotonicity. Nonlinear Anal., 58 (2004), 855-871. | DOI | MR | Zbl
,[55] A metric approach to a class of doubly nonlinear evolution equations and applications. Ann. Sc. Norm. Super. Pisa Cl. Sci., 7 (5) (2008), 97-169. | fulltext EuDML | MR | Zbl
- - ,[56] Nonlinear Partial Differential Equations with Applications. Birkhäuser, Basel 2005. | Zbl
,[57] Well-posedness and long-time behavior for a class of doubly nonlinear equations. Discrete Contin. Dyn. Syst., 18 (2007), 15-38. | DOI | MR | Zbl
- - ,[58] On some nonlinear evolution equation. Funkcial. Ekvac., 29 (1986), 243-257. | MR | Zbl
,[59] Compact sets in the space $L^p(0; T; B)$. Ann. Mat. Pura Appl., 146 (1987), 65-96. | DOI | MR | Zbl
,[60] The Brezis-Ekeland principle for doubly nonlinear equations. S.I.A.M. J. Control Optim., 8 (2008), 1615-1642. | DOI | MR | Zbl
,[61] The General Theory of Homogenization. A Personalized Introduction. Springer Berlin; UMI, Bologna, 2009. | DOI | MR | Zbl
,[62] Models of Phase Transitions. Birkhäuser, Boston 1996. | DOI | MR | Zbl
,[63] Extension of the Brezis-Ekeland-Nayroles principle to monotone operators. Adv. Math. Sci. Appl., 18 (2008), 633-650. | MR | Zbl
,[64] Scale-transformations of maximal monotone relations in view of homogenization. Boll. Un. Mat. Ital., III (9) (2010), 591-601. | fulltext bdim | fulltext EuDML | MR
,[65] Homogenization of a parabolic model of ferromagnetism. J. Differential Equations, 250 (2011), 1521-1552. | DOI | MR | Zbl
,[66] Scale-transformations and homogenization of maximal monotone relations, and applications. (forthcoming). | MR | Zbl
,[67] Variational formulation and structural stability of monotone equations. (forthcoming). | DOI | MR | Zbl
,[68] Structural stability of rate-independent nonpotential flows. (forthcoming). | DOI | MR | Zbl
,