Structural Stability of Doubly-Nonlinear Flows
Bollettino della Unione matematica italiana, Série 9, Tome 4 (2011) no. 3, pp. 363-391

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

To any maximal monotone operator $\alpha \colon V \to \mathcal{P}(V)$ ($V$ being a real Banach space),in [MR1009594] S. Fitzpatrick associated a lower semicontinuous and convex function $f \colon V \times V' \to \mathbb{R} \cup \{+\infty\}$ such that \begin{equation*} \tag{*} f(v,v') \geq \langle v', v \rangle \quad \forall (v, v'), \qquad f(v,v') = \langle v', v \rangle \iff v' \in \alpha(v).\end{equation*} On this basis, in this work two classes of doubly-nonlinear evolutionary equations are formulated as minimization principles: \begin{equation*} \tag{**} D_{t}\alpha(u) - \operatorname{div} \vec{\gamma}(\nabla u) \ni h, \qquad \alpha(D_{t}u) - \operatorname{div} \vec{\gamma}(\nabla u) \ni h; \end{equation*} here $\alpha$ and $\vec{\gamma}$ are maximal monotone mappings, and one of them is assumed to be cyclically monotone. For associated initial- and boundary-value problems, existence of a solution is proved, as well as the stability with respect to variations of the data and of the operators $D_{t}$, $\nabla$, $\alpha$ and $\vec{\gamma}$.
@article{BUMI_2011_9_4_3_a4,
     author = {Visintin, Augusto},
     title = {Structural {Stability} of {Doubly-Nonlinear} {Flows}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {363--391},
     publisher = {mathdoc},
     volume = {Ser. 9, 4},
     number = {3},
     year = {2011},
     zbl = {1235.35032},
     mrnumber = {2906767},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_3_a4/}
}
TY  - JOUR
AU  - Visintin, Augusto
TI  - Structural Stability of Doubly-Nonlinear Flows
JO  - Bollettino della Unione matematica italiana
PY  - 2011
SP  - 363
EP  - 391
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_3_a4/
LA  - en
ID  - BUMI_2011_9_4_3_a4
ER  - 
%0 Journal Article
%A Visintin, Augusto
%T Structural Stability of Doubly-Nonlinear Flows
%J Bollettino della Unione matematica italiana
%D 2011
%P 363-391
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_3_a4/
%G en
%F BUMI_2011_9_4_3_a4
Visintin, Augusto. Structural Stability of Doubly-Nonlinear Flows. Bollettino della Unione matematica italiana, Série 9, Tome 4 (2011) no. 3, pp. 363-391. http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_3_a4/