Multiplicity of Solutions for a Mean Field Equation on Compact Surfaces
Bollettino della Unione matematica italiana, Série 9, Tome 4 (2011) no. 2, pp. 245-257.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

$\rho$ belongs to $(8\pi, 4\pi^{2})$ we show under some extra assumptions that, as conjectured in [9], the functional admits at least three saddle points other than a local minimum.
@article{BUMI_2011_9_4_2_a4,
     author = {de Marchis, Francesca},
     title = {Multiplicity of {Solutions} for a {Mean} {Field} {Equation} on {Compact} {Surfaces}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {245--257},
     publisher = {mathdoc},
     volume = {Ser. 9, 4},
     number = {2},
     year = {2011},
     zbl = {1237.81119},
     mrnumber = {2840605},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_2_a4/}
}
TY  - JOUR
AU  - de Marchis, Francesca
TI  - Multiplicity of Solutions for a Mean Field Equation on Compact Surfaces
JO  - Bollettino della Unione matematica italiana
PY  - 2011
SP  - 245
EP  - 257
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_2_a4/
LA  - en
ID  - BUMI_2011_9_4_2_a4
ER  - 
%0 Journal Article
%A de Marchis, Francesca
%T Multiplicity of Solutions for a Mean Field Equation on Compact Surfaces
%J Bollettino della Unione matematica italiana
%D 2011
%P 245-257
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_2_a4/
%G en
%F BUMI_2011_9_4_2_a4
de Marchis, Francesca. Multiplicity of Solutions for a Mean Field Equation on Compact Surfaces. Bollettino della Unione matematica italiana, Série 9, Tome 4 (2011) no. 2, pp. 245-257. http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_2_a4/

[1] E. P. Caglioti - P. L. Lions - C. Marchioro - M. Pulvirenti, A special class of stationary flows for two dimensional Euler equations: a statistical mechanics description, Commun. Math. Phys., 143 (1995), 229-260. | MR | Zbl

[2] K. C. Chang, Infinite dimensional Morse theory and multiple solution problems, PNLDE 6, Birkhäuser, Boston, 1993. | DOI | MR | Zbl

[3] S. Y. A. Chang - M. J. Gursky - P. C. Yang, The scalar curvature equation on 2- and 3-spheres, Calc. Var. and Partial Diff. Eq., 1 (1993), 205-229. | DOI | MR

[4] S. Y. A. Chang - P. C. Yang, Prescribing Gaussian curvature on $\mathbb{S}^2$, Acta Math., 159 (1987), 215-259. | DOI | MR | Zbl

[5] W. Chen - C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622. | DOI | MR | Zbl

[6] W. Chen - C. Li, Prescribing Gaussian curvatures on surfaces with conical singularities, J. Geom. Anal., 1-4 (1991), 359-372. | DOI | MR

[7] C. C. Chen - C. S. Lin, Topological degree for a mean field equation on Riemann surfaces, Comm. Pure Appl. Math., 56 (2003), 1667-1727. | DOI | MR | Zbl

[8] D. C. Clark, A variant of the Lusternick-Schnirelman theory, Indiana J. Math., 22 (1972), 65-74. | DOI | MR | Zbl

[9] F. De Marchis, Multiplicity result for a scalar field equation on compact surfaces, Comm. Partial Differential Equations, 33 (2008), 2208-2224. | DOI | MR | Zbl

[10] F. De Marchis, Generic multiplicity for a scalar field equation on compact surfaces, J. Funct. Anal., 259 (2010), 2165-2192. | DOI | MR | Zbl

[11] W. Ding - J. Jost - J. Li - G. Wang, Existence result for mean field equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 16 (1999), 653-666. | fulltext EuDML | DOI | MR | Zbl

[12] W. Ding - J. Jost - J. Li - G. Wang, The differential equation $\Delta u = 8\pi - 8\pi h e^{u}$ on a compact Riemann surface, Asian J. Math., 1 (1997), 230-248. | DOI | MR | Zbl

[13] Z. Djadli, Existence result for the mean field problem on Riemann surfaces of all genuses, Commun. Contemp. Math., 10 (2008), 205-220. | DOI | MR | Zbl

[14] Z. Djadli - A. Malchiodi, Existence of conformal metrics with constant Q-curvature, Ann. of Math., 168 (2008), 813-858. | DOI | MR | Zbl

[15] G. Fournier - M. Willem, Multiple solutions of the forced double pendulum equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 6 (1989), 259-281. | fulltext EuDML | DOI | MR | Zbl

[16] M. K. H. Kiessling, Statistical mechanics approach to some problems in conformal geometry. Statistical mechanics: from rigorous results to applications, Phys. A, 279 (2000), 353-368. | DOI | MR

[17] J. L. Kazdan - F. W. Warner, Curvature functions for compact 2-manifolds, Ann. of Math., 99 (1974), 14-47. | DOI | MR | Zbl

[18] Y. Y. Li - I. Shafrir, Blow-up analysis for solutions of $-\Delta u = V e^{u}$ in dimension two, Ind. Univ. Math. J., 43 (1994), 1225-1270. | DOI | MR | Zbl

[19] Y. Y. Li, Harnack type inequality: the methods of moving planes, Comm. Math. Phys., 200 (1999), 421-444. | DOI | MR | Zbl

[20] C. S. Lin, Topological degree for mean field equations on $S^2$, Duke Math. J., 104 (2000), 501-536. | DOI | MR | Zbl

[21] M. Lucia, A blowing-up branch of solutions for a mean field equation, Calc. Var., 26 (2006), 313-330. | DOI | MR | Zbl

[22] M. Lucia, A deformation lemma with an application with a mean field equation, Topol. Methods Nonlinear Anal., 30 (2007), 113-138. | MR | Zbl

[23] A. Malchiodi, Morse theory and a scalar field equation on compact surfaces, Adv. Diff. Eq., 13 (2008), 1109-1129. | MR | Zbl

[24] M. Nolasco - G. Tarantello, On a sharp type-Sobolev inequality on two-dimensional compact manifolds, Arch. Ration. Mech. Anal., 145 (1998), 165-195. | DOI | MR | Zbl

[25] E. H. Spanier, Algebraic topology, Springer-Verlag, New-York, 1966. | MR

[26] M. Struwe - G. Tarantello, On multivortex solutions in Chern-Simons gauge theory, Boll. Unione Mat. Ital., 8 (1998), 109-121. | fulltext bdim | fulltext EuDML | MR | Zbl

[27] G. Tarantello, Multiple condensate solutions for the Chern-Simons-Higgs theory, J. Math. Phys., 37 (1996), 3769-3796. | DOI | MR | Zbl

[28] Y. Yang, Solitons in field theory and nonlinear analysis, Springer, 2001. | DOI | MR | Zbl