Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2011_9_4_2_a4, author = {de Marchis, Francesca}, title = {Multiplicity of {Solutions} for a {Mean} {Field} {Equation} on {Compact} {Surfaces}}, journal = {Bollettino della Unione matematica italiana}, pages = {245--257}, publisher = {mathdoc}, volume = {Ser. 9, 4}, number = {2}, year = {2011}, zbl = {1237.81119}, mrnumber = {2840605}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_2_a4/} }
TY - JOUR AU - de Marchis, Francesca TI - Multiplicity of Solutions for a Mean Field Equation on Compact Surfaces JO - Bollettino della Unione matematica italiana PY - 2011 SP - 245 EP - 257 VL - 4 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_2_a4/ LA - en ID - BUMI_2011_9_4_2_a4 ER -
de Marchis, Francesca. Multiplicity of Solutions for a Mean Field Equation on Compact Surfaces. Bollettino della Unione matematica italiana, Série 9, Tome 4 (2011) no. 2, pp. 245-257. http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_2_a4/
[1] A special class of stationary flows for two dimensional Euler equations: a statistical mechanics description, Commun. Math. Phys., 143 (1995), 229-260. | MR | Zbl
- - - ,[2] Infinite dimensional Morse theory and multiple solution problems, PNLDE 6, Birkhäuser, Boston, 1993. | DOI | MR | Zbl
,[3] The scalar curvature equation on 2- and 3-spheres, Calc. Var. and Partial Diff. Eq., 1 (1993), 205-229. | DOI | MR
- - ,[4] Prescribing Gaussian curvature on $\mathbb{S}^2$, Acta Math., 159 (1987), 215-259. | DOI | MR | Zbl
- ,[5] Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622. | DOI | MR | Zbl
- ,[6] Prescribing Gaussian curvatures on surfaces with conical singularities, J. Geom. Anal., 1-4 (1991), 359-372. | DOI | MR
- ,[7] Topological degree for a mean field equation on Riemann surfaces, Comm. Pure Appl. Math., 56 (2003), 1667-1727. | DOI | MR | Zbl
- ,[8] A variant of the Lusternick-Schnirelman theory, Indiana J. Math., 22 (1972), 65-74. | DOI | MR | Zbl
,[9] Multiplicity result for a scalar field equation on compact surfaces, Comm. Partial Differential Equations, 33 (2008), 2208-2224. | DOI | MR | Zbl
,[10] Generic multiplicity for a scalar field equation on compact surfaces, J. Funct. Anal., 259 (2010), 2165-2192. | DOI | MR | Zbl
,[11] Existence result for mean field equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 16 (1999), 653-666. | fulltext EuDML | DOI | MR | Zbl
- - - ,[12] The differential equation $\Delta u = 8\pi - 8\pi h e^{u}$ on a compact Riemann surface, Asian J. Math., 1 (1997), 230-248. | DOI | MR | Zbl
- - - ,[13] Existence result for the mean field problem on Riemann surfaces of all genuses, Commun. Contemp. Math., 10 (2008), 205-220. | DOI | MR | Zbl
,[14] Existence of conformal metrics with constant Q-curvature, Ann. of Math., 168 (2008), 813-858. | DOI | MR | Zbl
- ,[15] Multiple solutions of the forced double pendulum equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 6 (1989), 259-281. | fulltext EuDML | DOI | MR | Zbl
- ,[16] Statistical mechanics approach to some problems in conformal geometry. Statistical mechanics: from rigorous results to applications, Phys. A, 279 (2000), 353-368. | DOI | MR
,[17] Curvature functions for compact 2-manifolds, Ann. of Math., 99 (1974), 14-47. | DOI | MR | Zbl
- ,[18] Blow-up analysis for solutions of $-\Delta u = V e^{u}$ in dimension two, Ind. Univ. Math. J., 43 (1994), 1225-1270. | DOI | MR | Zbl
- ,[19] Harnack type inequality: the methods of moving planes, Comm. Math. Phys., 200 (1999), 421-444. | DOI | MR | Zbl
,[20] Topological degree for mean field equations on $S^2$, Duke Math. J., 104 (2000), 501-536. | DOI | MR | Zbl
,[21] A blowing-up branch of solutions for a mean field equation, Calc. Var., 26 (2006), 313-330. | DOI | MR | Zbl
,[22] A deformation lemma with an application with a mean field equation, Topol. Methods Nonlinear Anal., 30 (2007), 113-138. | MR | Zbl
,[23] Morse theory and a scalar field equation on compact surfaces, Adv. Diff. Eq., 13 (2008), 1109-1129. | MR | Zbl
,[24] On a sharp type-Sobolev inequality on two-dimensional compact manifolds, Arch. Ration. Mech. Anal., 145 (1998), 165-195. | DOI | MR | Zbl
- ,[25] Algebraic topology, Springer-Verlag, New-York, 1966. | MR
,[26] On multivortex solutions in Chern-Simons gauge theory, Boll. Unione Mat. Ital., 8 (1998), 109-121. | fulltext bdim | fulltext EuDML | MR | Zbl
- ,[27] Multiple condensate solutions for the Chern-Simons-Higgs theory, J. Math. Phys., 37 (1996), 3769-3796. | DOI | MR | Zbl
,[28] Solitons in field theory and nonlinear analysis, Springer, 2001. | DOI | MR | Zbl
,