Full Regularity for Convex Integral Functionals with $p(x)$ Growth in Low Dimensions
Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 3, pp. 521-541
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
For $\Omega \subset \mathbf{R}^{n}$; $n \ge 2$, and $N \ge 1$ we consider vector valued minimizers $u \in W_{loc}^{m,p(\cdot)}(\Omega,\mathbf{R}^{N})$ of a uniformly convex integral functional of the type $$\mathcal{F} \left[ u,\Omega \right] := \int_{\Omega} f(x,D^{m}u) \, dx,$$ where $f$ is a Carathéorody function satisfying $p(x)$ growth conditions with respect to the second variable. We show that if the dimension $n$ is small enough, dependent on the structure conditions of the functional, there holds $$D^{k}u \in C_{loc}^{0,\beta}(\Omega) \,\, \text{for} \,\, k \in \{0,\cdots,m-1\},$$ for some $\beta$, also depending on the structural data, provided that the nonlinearity exponent $p$ is uniformly continuous with modulus of continuity $\omega$ satisfying $$\limsup_{\rho\downarrow 0} \omega(\rho) \log \bigg( \frac{1}{\rho} \bigg) = 0.$$
@article{BUMI_2010_9_3_3_a6,
author = {Habermann, Jens},
title = {Full {Regularity} for {Convex} {Integral} {Functionals} with $p(x)$ {Growth} in {Low} {Dimensions}},
journal = {Bollettino della Unione matematica italiana},
pages = {521--541},
publisher = {mathdoc},
volume = {Ser. 9, 3},
number = {3},
year = {2010},
zbl = {1217.49029},
mrnumber = {2742780},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a6/}
}
TY - JOUR AU - Habermann, Jens TI - Full Regularity for Convex Integral Functionals with $p(x)$ Growth in Low Dimensions JO - Bollettino della Unione matematica italiana PY - 2010 SP - 521 EP - 541 VL - 3 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a6/ LA - en ID - BUMI_2010_9_3_3_a6 ER -
Habermann, Jens. Full Regularity for Convex Integral Functionals with $p(x)$ Growth in Low Dimensions. Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 3, pp. 521-541. http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a6/