Full Regularity for Convex Integral Functionals with $p(x)$ Growth in Low Dimensions
Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 3, pp. 521-541.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

For $\Omega \subset \mathbf{R}^{n}$; $n \ge 2$, and $N \ge 1$ we consider vector valued minimizers $u \in W_{loc}^{m,p(\cdot)}(\Omega,\mathbf{R}^{N})$ of a uniformly convex integral functional of the type $$\mathcal{F} \left[ u,\Omega \right] := \int_{\Omega} f(x,D^{m}u) \, dx,$$ where $f$ is a Carathéorody function satisfying $p(x)$ growth conditions with respect to the second variable. We show that if the dimension $n$ is small enough, dependent on the structure conditions of the functional, there holds $$D^{k}u \in C_{loc}^{0,\beta}(\Omega) \,\, \text{for} \,\, k \in \{0,\cdots,m-1\},$$ for some $\beta$, also depending on the structural data, provided that the nonlinearity exponent $p$ is uniformly continuous with modulus of continuity $\omega$ satisfying $$\limsup_{\rho\downarrow 0} \omega(\rho) \log \bigg( \frac{1}{\rho} \bigg) = 0.$$
@article{BUMI_2010_9_3_3_a6,
     author = {Habermann, Jens},
     title = {Full {Regularity} for {Convex} {Integral} {Functionals} with $p(x)$ {Growth} in {Low} {Dimensions}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {521--541},
     publisher = {mathdoc},
     volume = {Ser. 9, 3},
     number = {3},
     year = {2010},
     zbl = {1217.49029},
     mrnumber = {2742780},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a6/}
}
TY  - JOUR
AU  - Habermann, Jens
TI  - Full Regularity for Convex Integral Functionals with $p(x)$ Growth in Low Dimensions
JO  - Bollettino della Unione matematica italiana
PY  - 2010
SP  - 521
EP  - 541
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a6/
LA  - en
ID  - BUMI_2010_9_3_3_a6
ER  - 
%0 Journal Article
%A Habermann, Jens
%T Full Regularity for Convex Integral Functionals with $p(x)$ Growth in Low Dimensions
%J Bollettino della Unione matematica italiana
%D 2010
%P 521-541
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a6/
%G en
%F BUMI_2010_9_3_3_a6
Habermann, Jens. Full Regularity for Convex Integral Functionals with $p(x)$ Growth in Low Dimensions. Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 3, pp. 521-541. http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a6/

[1] E. Acerbi - G. Mingione, Regularity results for a class of functionals with nonstandard growth, Arch. Ration. Mech. Anal., 156, 2 (2001), 121-140. | DOI | MR | Zbl

[2] E. Acerbi - G. Mingione, Regularity results for a class of quasiconvex functionals with nonstandard growth, Ann. Sc. Norm. Pisa Cl. Sci. (4), 30 (2001), 311-339. | fulltext EuDML | MR | Zbl

[3] E. Acerbi - G. Mingione, Regularity results for stationary electro-rheological fluids, Arch. Rational Mech. Anal., 164 (2002), 213-259. | DOI | MR | Zbl

[4] E. Acerbi - G. Mingione, Gradient estimates for the $p(x)$-laplacean system, J. Reine Angew. Math., 584 (2005), 117-148. | DOI | MR | Zbl

[5] S. Campanato, Hölder continuity of the Solutions of Some Non-linear Elliptic Systems, Adv. Math., 48 (1983), 16-43. | DOI | MR

[6] Y. Chen - S. Levine - R. Rao, Functionals with $p(x)$-growth in image processing, SIAM J. Appl. Math., 66, no. 4 (2006), 1383-1406. | DOI | MR | Zbl

[7] A. Coscia - G. Mingione, Hölder continuity of the gradient of $p(x)$ harmonic mappings, C. R. Acad. Sci. Paris, 328 (1) (1999), 363-368. | DOI | MR | Zbl

[8] G. Cupini - N. Fusco - R. Petti, Hölder continuity of local minimizers, J. Math. Anal. Appl., 235 (1999), 578-597. | DOI | MR | Zbl

[9] L. Diening, Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces $L^{p(\cdot)}$ and $W^{k,p(\cdot)}$, Math. Nachr., 268 (2004), 31-43. | DOI | MR | Zbl

[10] F. Duzaar - A. Gastel - J. Grotowski, Optimal partial regularity for nonlinear elliptic systems of higher order, J. Math. Sci. Univ. Tokyo, 8 (2001), 463-499. | MR | Zbl

[11] D. Edmunds - J. Rákosník, Sobolev embeddings with variable exponent, Stud. Math., 143, No. 3 (2000), 267-293. | fulltext EuDML | DOI | MR | Zbl

[12] D. Edmunds - J. Rákosník, Sobolev embeddings with variable exponent II, Math. Nachr., 246-27 (2002), 53-67. | DOI | MR

[13] M. Eleuteri, Hölder continuity results for a class of functionals with non standard growth, Boll. Unione Mat. Ital., 8, 7-B (2004), 129-157. | fulltext bdim | fulltext EuDML | MR | Zbl

[14] M. Eleuteri - J. Habermann, Regularity results for a class of obstacle problems under non standard growth conditions, J. Math. Anal. Appl., 344 (2), (2008), 1120-1142. | DOI | MR | Zbl

[15] L. Esposito - F. Leonetti - G. Mingione, Sharp regularity for functionals with $(p,q)$ growth, J. Differential Equations 204, no. 1 (2004), 5-55. | DOI | MR | Zbl

[16] X. Fan - D. Zhao, A class of DeGiorgi type and Hölder continuity, Nonlin. Anal., 36 (A) (1999), 295-318. | DOI | MR

[17] E. Giusti, Direct methods in the calculus of variations, Singapore: World Scientific, vii (2003). | DOI | MR | Zbl

[18] J. Habermann, Partial regularity for minima of higher order functionals with $p(x)$ growth, Manuscripta Math., 126 (1) (2007), 1-40. | DOI | MR | Zbl

[19] J. Habermann, Calderón-Zygmund estimates for higher order systems with $p(x)$ growth, Math. Z., 258 (2) (2008), 427-462. | DOI | MR | Zbl

[20] O. Kovaâčik - Ž. J. Rákosník, On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czechoslovak Math. J., 41, no. 116 (1991). | fulltext EuDML

[21] P. Marcellini, Regularity and existence of solutions of elliptic equations with $p - q$-growth conditions, J. Differ. Equations, 90 (1991), 1-30. | DOI | MR | Zbl

[22] J. Musielak, Orlicz spaces and modular spaces, Springer, Berlin, 1983. | DOI | MR | Zbl

[23] K. R. Rajagopal - M. Růžička, Mathematical modelling of electro-rheological fluids, Cont. Mech. Therm., 13 (2001), 59-78.

[24] V. V. Zhikov, On some variational problems, Russian J. Math. Phys., 5 (1997), 105-116. | MR | Zbl