Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2010_9_3_3_a6, author = {Habermann, Jens}, title = {Full {Regularity} for {Convex} {Integral} {Functionals} with $p(x)$ {Growth} in {Low} {Dimensions}}, journal = {Bollettino della Unione matematica italiana}, pages = {521--541}, publisher = {mathdoc}, volume = {Ser. 9, 3}, number = {3}, year = {2010}, zbl = {1217.49029}, mrnumber = {2742780}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a6/} }
TY - JOUR AU - Habermann, Jens TI - Full Regularity for Convex Integral Functionals with $p(x)$ Growth in Low Dimensions JO - Bollettino della Unione matematica italiana PY - 2010 SP - 521 EP - 541 VL - 3 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a6/ LA - en ID - BUMI_2010_9_3_3_a6 ER -
Habermann, Jens. Full Regularity for Convex Integral Functionals with $p(x)$ Growth in Low Dimensions. Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 3, pp. 521-541. http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a6/
[1] Regularity results for a class of functionals with nonstandard growth, Arch. Ration. Mech. Anal., 156, 2 (2001), 121-140. | DOI | MR | Zbl
- ,[2] Regularity results for a class of quasiconvex functionals with nonstandard growth, Ann. Sc. Norm. Pisa Cl. Sci. (4), 30 (2001), 311-339. | fulltext EuDML | MR | Zbl
- ,[3] Regularity results for stationary electro-rheological fluids, Arch. Rational Mech. Anal., 164 (2002), 213-259. | DOI | MR | Zbl
- ,[4] Gradient estimates for the $p(x)$-laplacean system, J. Reine Angew. Math., 584 (2005), 117-148. | DOI | MR | Zbl
- ,[5] Hölder continuity of the Solutions of Some Non-linear Elliptic Systems, Adv. Math., 48 (1983), 16-43. | DOI | MR
,[6] Functionals with $p(x)$-growth in image processing, SIAM J. Appl. Math., 66, no. 4 (2006), 1383-1406. | DOI | MR | Zbl
- - ,[7] Hölder continuity of the gradient of $p(x)$ harmonic mappings, C. R. Acad. Sci. Paris, 328 (1) (1999), 363-368. | DOI | MR | Zbl
- ,[8] Hölder continuity of local minimizers, J. Math. Anal. Appl., 235 (1999), 578-597. | DOI | MR | Zbl
- - ,[9] Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces $L^{p(\cdot)}$ and $W^{k,p(\cdot)}$, Math. Nachr., 268 (2004), 31-43. | DOI | MR | Zbl
,[10] Optimal partial regularity for nonlinear elliptic systems of higher order, J. Math. Sci. Univ. Tokyo, 8 (2001), 463-499. | MR | Zbl
- - ,[11] Sobolev embeddings with variable exponent, Stud. Math., 143, No. 3 (2000), 267-293. | fulltext EuDML | DOI | MR | Zbl
- ,[12] Sobolev embeddings with variable exponent II, Math. Nachr., 246-27 (2002), 53-67. | DOI | MR
- ,[13] Hölder continuity results for a class of functionals with non standard growth, Boll. Unione Mat. Ital., 8, 7-B (2004), 129-157. | fulltext bdim | fulltext EuDML | MR | Zbl
,[14] Regularity results for a class of obstacle problems under non standard growth conditions, J. Math. Anal. Appl., 344 (2), (2008), 1120-1142. | DOI | MR | Zbl
- ,[15] Sharp regularity for functionals with $(p,q)$ growth, J. Differential Equations 204, no. 1 (2004), 5-55. | DOI | MR | Zbl
- - ,[16] A class of DeGiorgi type and Hölder continuity, Nonlin. Anal., 36 (A) (1999), 295-318. | DOI | MR
- ,[17] Direct methods in the calculus of variations, Singapore: World Scientific, vii (2003). | DOI | MR | Zbl
,[18] Partial regularity for minima of higher order functionals with $p(x)$ growth, Manuscripta Math., 126 (1) (2007), 1-40. | DOI | MR | Zbl
,[19] Calderón-Zygmund estimates for higher order systems with $p(x)$ growth, Math. Z., 258 (2) (2008), 427-462. | DOI | MR | Zbl
,[20] On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czechoslovak Math. J., 41, no. 116 (1991). | fulltext EuDML
- ,[21] Regularity and existence of solutions of elliptic equations with $p - q$-growth conditions, J. Differ. Equations, 90 (1991), 1-30. | DOI | MR | Zbl
,[22] Orlicz spaces and modular spaces, Springer, Berlin, 1983. | DOI | MR | Zbl
,[23] Mathematical modelling of electro-rheological fluids, Cont. Mech. Therm., 13 (2001), 59-78.
- ,[24] On some variational problems, Russian J. Math. Phys., 5 (1997), 105-116. | MR | Zbl
,