Density and Tangential Properties of the Graph of Hölder Functions
Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 3, pp. 493-503.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this paper the circular densities (with respect to the Hausdorff or packing measure) of graphs of Hölder continuous functions are studied. They are related to the local behaviour of the functions making use of some geometric properties.
@article{BUMI_2010_9_3_3_a4,
     author = {Biacino, Loredana},
     title = {Density and {Tangential} {Properties} of the {Graph} of {H\"older} {Functions}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {493--503},
     publisher = {mathdoc},
     volume = {Ser. 9, 3},
     number = {3},
     year = {2010},
     zbl = {1213.28003},
     mrnumber = {2742778},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a4/}
}
TY  - JOUR
AU  - Biacino, Loredana
TI  - Density and Tangential Properties of the Graph of Hölder Functions
JO  - Bollettino della Unione matematica italiana
PY  - 2010
SP  - 493
EP  - 503
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a4/
LA  - en
ID  - BUMI_2010_9_3_3_a4
ER  - 
%0 Journal Article
%A Biacino, Loredana
%T Density and Tangential Properties of the Graph of Hölder Functions
%J Bollettino della Unione matematica italiana
%D 2010
%P 493-503
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a4/
%G en
%F BUMI_2010_9_3_3_a4
Biacino, Loredana. Density and Tangential Properties of the Graph of Hölder Functions. Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 3, pp. 493-503. http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a4/

[1] A. S. Besicovitch, On the fundamental geometrical properties of linearly measurable plane sets of points, Math. Annalen, 98 (1927) 422-65. | fulltext EuDML | DOI | MR | Zbl

[2] A. S. Besicovitch, On the fundamental geometrical properties of linearly measurable plane sets of points (II), Math. Annalen, 115 (1938) 296-329. | fulltext EuDML | DOI | MR | Zbl

[3] A. S. Besicovitch, On the fundamental geometrical properties of linearly measurable plane sets of points (III), Math. Annalen, 116 (1939) 349-57. | fulltext EuDML | DOI | MR | Zbl

[4] A. S. Besicovitch, On tangents to general sets of points, Fundamenta Mathematicae, 22 (1934) 49-53. | fulltext EuDML | Zbl

[5] A. S. Besicovitch - H. D. Ursell, Sets of fractional dimensions (V): on dimensional numbers of some continuous curves, Journal London Math. Soc., 12 (1937) 18-25. | DOI | MR | Zbl

[6] A. S. Besicovitch, On the existence of tangents to rectifiable curves, Journal London Math. Soc., 19 (1945) 205-207. | DOI | MR | Zbl

[7] L. Biacino, Derivatives of fractional order of continuous functions, Ricerche Mat., LIII (2004) 231-254. | MR | Zbl

[8] L. Biacino, Hausdorff dimension of the diagram of a-Hölder continuous functions, Ricerche Mat., LIV (2005) 229-243. | MR

[9] L. Biacino, A note on the box dimension of the graph of a continuous function, submitted for publication. | DOI | MR | Zbl

[10] K. J. Falconer, The geometry of fractal sets, Cambridge University Press, 1985. | MR | Zbl

[11] K. J. Falconer, Fractal Geometry, Mathematical Foundations and Applications, John Wiley and Sons Ltd., New-York, 1990. | MR

[12] Y. Heurteaux, Weierstrass functions with random phases, Trans. Am. Math. Soc., 355, n. 8 (2003) 3065-3077. | DOI | MR | Zbl

[13] M. A. Martin - P. Mattila, Hausdorff measures, Hölder continuous maps and self similar fractals, Math. Proc. Cambridge Philos. Soc., 114 (1993) 37-42. | DOI | MR | Zbl

[14] J. M. Marstrand, Some fundamental geometrical properties of plane sets of fractional dimensions, Proceedings London Math. Soc., 4 (1954) 257-302. | DOI | MR | Zbl

[15] J. M. Marstrand, Circular density of plane sets, Journal London Math. Soc., 30 (1954) 238-46. | DOI | MR | Zbl

[16] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, 1995. | DOI | MR | Zbl

[17] D. Preiss, Geometry of measures in $\mathbf{R}^{n}$: Distribution, rectifiability, and densities, Annals of Mathematics, 125 (1987) 537-643. | DOI | MR | Zbl

[18] F. Przytycki - M. Urbanski, On the Hausdorff dimension of some fractal sets, Studia Math., 93 (1989) 155-186. | fulltext EuDML | DOI | MR | Zbl

[19] C. Tricot, Two definitions of fractional dimension, Math. Proc. Cambridge Philos. Soc., 91 (1982) 57-74. | DOI | MR | Zbl