Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2010_9_3_3_a4, author = {Biacino, Loredana}, title = {Density and {Tangential} {Properties} of the {Graph} of {H\"older} {Functions}}, journal = {Bollettino della Unione matematica italiana}, pages = {493--503}, publisher = {mathdoc}, volume = {Ser. 9, 3}, number = {3}, year = {2010}, zbl = {1213.28003}, mrnumber = {2742778}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a4/} }
TY - JOUR AU - Biacino, Loredana TI - Density and Tangential Properties of the Graph of Hölder Functions JO - Bollettino della Unione matematica italiana PY - 2010 SP - 493 EP - 503 VL - 3 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a4/ LA - en ID - BUMI_2010_9_3_3_a4 ER -
Biacino, Loredana. Density and Tangential Properties of the Graph of Hölder Functions. Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 3, pp. 493-503. http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a4/
[1] On the fundamental geometrical properties of linearly measurable plane sets of points, Math. Annalen, 98 (1927) 422-65. | fulltext EuDML | DOI | MR | Zbl
,[2] On the fundamental geometrical properties of linearly measurable plane sets of points (II), Math. Annalen, 115 (1938) 296-329. | fulltext EuDML | DOI | MR | Zbl
,[3] On the fundamental geometrical properties of linearly measurable plane sets of points (III), Math. Annalen, 116 (1939) 349-57. | fulltext EuDML | DOI | MR | Zbl
,[4] On tangents to general sets of points, Fundamenta Mathematicae, 22 (1934) 49-53. | fulltext EuDML | Zbl
,[5] Sets of fractional dimensions (V): on dimensional numbers of some continuous curves, Journal London Math. Soc., 12 (1937) 18-25. | DOI | MR | Zbl
- ,[6] On the existence of tangents to rectifiable curves, Journal London Math. Soc., 19 (1945) 205-207. | DOI | MR | Zbl
,[7] Derivatives of fractional order of continuous functions, Ricerche Mat., LIII (2004) 231-254. | MR | Zbl
,[8] Hausdorff dimension of the diagram of a-Hölder continuous functions, Ricerche Mat., LIV (2005) 229-243. | MR
,[9] A note on the box dimension of the graph of a continuous function, submitted for publication. | DOI | MR | Zbl
,[10] The geometry of fractal sets, Cambridge University Press, 1985. | MR | Zbl
,[11] Fractal Geometry, Mathematical Foundations and Applications, John Wiley and Sons Ltd., New-York, 1990. | MR
,[12] Weierstrass functions with random phases, Trans. Am. Math. Soc., 355, n. 8 (2003) 3065-3077. | DOI | MR | Zbl
,[13] Hausdorff measures, Hölder continuous maps and self similar fractals, Math. Proc. Cambridge Philos. Soc., 114 (1993) 37-42. | DOI | MR | Zbl
- ,[14] Some fundamental geometrical properties of plane sets of fractional dimensions, Proceedings London Math. Soc., 4 (1954) 257-302. | DOI | MR | Zbl
,[15] Circular density of plane sets, Journal London Math. Soc., 30 (1954) 238-46. | DOI | MR | Zbl
,[16] Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, 1995. | DOI | MR | Zbl
,[17] Geometry of measures in $\mathbf{R}^{n}$: Distribution, rectifiability, and densities, Annals of Mathematics, 125 (1987) 537-643. | DOI | MR | Zbl
,[18] On the Hausdorff dimension of some fractal sets, Studia Math., 93 (1989) 155-186. | fulltext EuDML | DOI | MR | Zbl
- ,[19] Two definitions of fractional dimension, Math. Proc. Cambridge Philos. Soc., 91 (1982) 57-74. | DOI | MR | Zbl
,