The Existence and Multiplicity of Heteroclinic and Homoclinic Orbits for a Class of Singular Hamiltonian Systems in $\mathbf{R}^{2}$
Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 3, pp. 471-491

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this work we consider a class of planar second order Hamiltonian systems: $\ddot{q} + \nabla V(q) = 0$, where a potential $V$ has a singularity at a point $\xi \in \mathbf{R}^{2}$: $V(q) \to -\infty$, as $q \to \xi$ and the unique global maximum $0 \in \mathbf{R}$ that is achieved at two distinct points $a,b \in \mathbf{R}^{2}\setminus \{ \xi \}$. For a class of potentials that satisfy a strong force condition introduced by W. B. Gordon [Trans. Amer. Math. Soc. 204 (1975)], via minimization of action integrals, we establish the existence of at least two solutions which wind around $\xi$ and join $\{ a,b \}$ to $\{ a,b \}$. One of them, $Q$, is a heteroclinic orbit joining $a$ to $b$. The second is either homoclinic or heteroclinic possessing a rotation number (a winding number) different from $Q$.
@article{BUMI_2010_9_3_3_a3,
     author = {Janczewska, Joanna},
     title = {The {Existence} and {Multiplicity} of {Heteroclinic} and {Homoclinic} {Orbits} for a {Class} of {Singular} {Hamiltonian} {Systems} in $\mathbf{R}^{2}$},
     journal = {Bollettino della Unione matematica italiana},
     pages = {471--491},
     publisher = {mathdoc},
     volume = {Ser. 9, 3},
     number = {3},
     year = {2010},
     zbl = {1214.37049},
     mrnumber = {2742777},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a3/}
}
TY  - JOUR
AU  - Janczewska, Joanna
TI  - The Existence and Multiplicity of Heteroclinic and Homoclinic Orbits for a Class of Singular Hamiltonian Systems in $\mathbf{R}^{2}$
JO  - Bollettino della Unione matematica italiana
PY  - 2010
SP  - 471
EP  - 491
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a3/
LA  - en
ID  - BUMI_2010_9_3_3_a3
ER  - 
%0 Journal Article
%A Janczewska, Joanna
%T The Existence and Multiplicity of Heteroclinic and Homoclinic Orbits for a Class of Singular Hamiltonian Systems in $\mathbf{R}^{2}$
%J Bollettino della Unione matematica italiana
%D 2010
%P 471-491
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a3/
%G en
%F BUMI_2010_9_3_3_a3
Janczewska, Joanna. The Existence and Multiplicity of Heteroclinic and Homoclinic Orbits for a Class of Singular Hamiltonian Systems in $\mathbf{R}^{2}$. Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 3, pp. 471-491. http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a3/