The Existence and Multiplicity of Heteroclinic and Homoclinic Orbits for a Class of Singular Hamiltonian Systems in $\mathbf{R}^{2}$
Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 3, pp. 471-491
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
In this work we consider a class of planar second order Hamiltonian systems: $\ddot{q} + \nabla V(q) = 0$, where a potential $V$ has a singularity at a point $\xi \in \mathbf{R}^{2}$: $V(q) \to -\infty$, as $q \to \xi$ and the unique global maximum $0 \in \mathbf{R}$ that is achieved at two distinct points $a,b \in \mathbf{R}^{2}\setminus \{ \xi \}$. For a class of potentials that satisfy a strong force condition introduced by W. B. Gordon [Trans. Amer. Math. Soc. 204 (1975)], via minimization of action integrals, we establish the existence of at least two solutions which wind around $\xi$ and join $\{ a,b \}$ to $\{ a,b \}$. One of them, $Q$, is a heteroclinic orbit joining $a$ to $b$. The second is either homoclinic or heteroclinic possessing a rotation number (a winding number) different from $Q$.
@article{BUMI_2010_9_3_3_a3,
author = {Janczewska, Joanna},
title = {The {Existence} and {Multiplicity} of {Heteroclinic} and {Homoclinic} {Orbits} for a {Class} of {Singular} {Hamiltonian} {Systems} in $\mathbf{R}^{2}$},
journal = {Bollettino della Unione matematica italiana},
pages = {471--491},
year = {2010},
volume = {Ser. 9, 3},
number = {3},
zbl = {1214.37049},
mrnumber = {2742777},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a3/}
}
TY - JOUR
AU - Janczewska, Joanna
TI - The Existence and Multiplicity of Heteroclinic and Homoclinic Orbits for a Class of Singular Hamiltonian Systems in $\mathbf{R}^{2}$
JO - Bollettino della Unione matematica italiana
PY - 2010
SP - 471
EP - 491
VL - 3
IS - 3
UR - http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a3/
LA - en
ID - BUMI_2010_9_3_3_a3
ER -
%0 Journal Article
%A Janczewska, Joanna
%T The Existence and Multiplicity of Heteroclinic and Homoclinic Orbits for a Class of Singular Hamiltonian Systems in $\mathbf{R}^{2}$
%J Bollettino della Unione matematica italiana
%D 2010
%P 471-491
%V 3
%N 3
%U http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a3/
%G en
%F BUMI_2010_9_3_3_a3
Janczewska, Joanna. The Existence and Multiplicity of Heteroclinic and Homoclinic Orbits for a Class of Singular Hamiltonian Systems in $\mathbf{R}^{2}$. Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 3, pp. 471-491. http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a3/