Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2010_9_3_3_a3, author = {Janczewska, Joanna}, title = {The {Existence} and {Multiplicity} of {Heteroclinic} and {Homoclinic} {Orbits} for a {Class} of {Singular} {Hamiltonian} {Systems} in $\mathbf{R}^{2}$}, journal = {Bollettino della Unione matematica italiana}, pages = {471--491}, publisher = {mathdoc}, volume = {Ser. 9, 3}, number = {3}, year = {2010}, zbl = {1214.37049}, mrnumber = {2742777}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a3/} }
TY - JOUR AU - Janczewska, Joanna TI - The Existence and Multiplicity of Heteroclinic and Homoclinic Orbits for a Class of Singular Hamiltonian Systems in $\mathbf{R}^{2}$ JO - Bollettino della Unione matematica italiana PY - 2010 SP - 471 EP - 491 VL - 3 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a3/ LA - en ID - BUMI_2010_9_3_3_a3 ER -
%0 Journal Article %A Janczewska, Joanna %T The Existence and Multiplicity of Heteroclinic and Homoclinic Orbits for a Class of Singular Hamiltonian Systems in $\mathbf{R}^{2}$ %J Bollettino della Unione matematica italiana %D 2010 %P 471-491 %V 3 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a3/ %G en %F BUMI_2010_9_3_3_a3
Janczewska, Joanna. The Existence and Multiplicity of Heteroclinic and Homoclinic Orbits for a Class of Singular Hamiltonian Systems in $\mathbf{R}^{2}$. Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 3, pp. 471-491. http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a3/
[1] Periodic solutions of singular Lagrangian systems, Progress in Nonlinear Differential Equations and their Applications, Vol. X, Birkhäuser Boston, Inc., Boston, MA (1993). | DOI | MR | Zbl
- ,[2] Multiplicity of homoclinic solutions for singular second-order conservative systems, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 1169-1180. | DOI | MR | Zbl
- ,[3] Shadowing chains of collision orbits, Discrete Contin. Dyn. Syst., 14 (2006), 235-260. | DOI | MR | Zbl
,[4] Heteroclinic and homoclinic solutions for a singular Hamiltonian system, European J. Appl. Math., 17 (2006), 1-32. | DOI | MR | Zbl
,[5] Homoclinics and heteroclinics for a class of conservative singular Hamiltonian systems, J. Differential Equations, 136 (1997), 76-114. | DOI | MR | Zbl
- ,[6] Multiple homoclinic solutions for a class of autonomous singular systems in $\mathbf{R}^{2}$, Ann. Inst. H. PoincarÂe Anal. Non Linéaire, 15 (1998), 113-125. | fulltext EuDML | DOI | MR
- ,[7] Hyperbolic-like solutions for singular Hamiltonian systems, NoDEA Nonlinear Differential Equations Appl., 7 (2000), 43-65. | DOI | MR | Zbl
- ,[8] Scattering solutions for planar singular Hamiltonian systems via minimization, Adv. Differential Equations, 5 (2000), 1519-1544. | MR | Zbl
- ,[9] Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc., 204 (1975), 113-135. | DOI | MR | Zbl
,[10] Periodic solutions of a class of singular Hamiltonian systems, Nonlinear Anal., 12 (1988), 259-269. | DOI | MR | Zbl
,[11] Homoclinic solutions for a class of the second order Hamiltonian systems, J. Differential Equations, 219 (2005), 375-389. | DOI | MR | Zbl
- ,[12] Heteroclinic solutions for a class of the second order Hamiltonian systems, J. Differential Equations, 238 (2007), 381-393. | DOI | MR | Zbl
- ,[13] Periodic and heteroclinic orbits for a periodic Hamiltonian system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 331-346. | fulltext EuDML | MR | Zbl
,[14] Homoclinics for a singular Hamiltonian system, in Geometric analysis and the calculus of variations, Int. Press, Cambridge, MA, (1996), 267-296. | MR | Zbl
,[15] Noncollision solutions to some singular minimization problems with Keplerian-like potentials, Nonlinear Anal., 22 (1994), 45-62. | DOI | MR | Zbl
- ,[16] Homoclinic orbits at infinity for second order conservative systems, NoDEA Nonlinear Differential Equations Appl., 1 (1994), 249-266. | DOI | MR | Zbl
,[17] Heteroclinic orbits at infinity for two classes of Hamiltonian systems, Boll. Un. Mat. Ital. Sect. B (7), 8 (1994), 615-639. | MR | Zbl
,[18] Homoclinic orbits for a singular second order Hamiltonian system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 7 (1990), 427-438. | fulltext EuDML | DOI | MR | Zbl
,