The Existence and Multiplicity of Heteroclinic and Homoclinic Orbits for a Class of Singular Hamiltonian Systems in $\mathbf{R}^{2}$
Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 3, pp. 471-491.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this work we consider a class of planar second order Hamiltonian systems: $\ddot{q} + \nabla V(q) = 0$, where a potential $V$ has a singularity at a point $\xi \in \mathbf{R}^{2}$: $V(q) \to -\infty$, as $q \to \xi$ and the unique global maximum $0 \in \mathbf{R}$ that is achieved at two distinct points $a,b \in \mathbf{R}^{2}\setminus \{ \xi \}$. For a class of potentials that satisfy a strong force condition introduced by W. B. Gordon [Trans. Amer. Math. Soc. 204 (1975)], via minimization of action integrals, we establish the existence of at least two solutions which wind around $\xi$ and join $\{ a,b \}$ to $\{ a,b \}$. One of them, $Q$, is a heteroclinic orbit joining $a$ to $b$. The second is either homoclinic or heteroclinic possessing a rotation number (a winding number) different from $Q$.
@article{BUMI_2010_9_3_3_a3,
     author = {Janczewska, Joanna},
     title = {The {Existence} and {Multiplicity} of {Heteroclinic} and {Homoclinic} {Orbits} for a {Class} of {Singular} {Hamiltonian} {Systems} in $\mathbf{R}^{2}$},
     journal = {Bollettino della Unione matematica italiana},
     pages = {471--491},
     publisher = {mathdoc},
     volume = {Ser. 9, 3},
     number = {3},
     year = {2010},
     zbl = {1214.37049},
     mrnumber = {2742777},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a3/}
}
TY  - JOUR
AU  - Janczewska, Joanna
TI  - The Existence and Multiplicity of Heteroclinic and Homoclinic Orbits for a Class of Singular Hamiltonian Systems in $\mathbf{R}^{2}$
JO  - Bollettino della Unione matematica italiana
PY  - 2010
SP  - 471
EP  - 491
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a3/
LA  - en
ID  - BUMI_2010_9_3_3_a3
ER  - 
%0 Journal Article
%A Janczewska, Joanna
%T The Existence and Multiplicity of Heteroclinic and Homoclinic Orbits for a Class of Singular Hamiltonian Systems in $\mathbf{R}^{2}$
%J Bollettino della Unione matematica italiana
%D 2010
%P 471-491
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a3/
%G en
%F BUMI_2010_9_3_3_a3
Janczewska, Joanna. The Existence and Multiplicity of Heteroclinic and Homoclinic Orbits for a Class of Singular Hamiltonian Systems in $\mathbf{R}^{2}$. Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 3, pp. 471-491. http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a3/

[1] A. Ambrosetti - V. Coti Zelati, Periodic solutions of singular Lagrangian systems, Progress in Nonlinear Differential Equations and their Applications, Vol. X, Birkhäuser Boston, Inc., Boston, MA (1993). | DOI | MR | Zbl

[2] M. L. Bertotti - L. Jeanjean, Multiplicity of homoclinic solutions for singular second-order conservative systems, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 1169-1180. | DOI | MR | Zbl

[3] S. V. Bolotin, Shadowing chains of collision orbits, Discrete Contin. Dyn. Syst., 14 (2006), 235-260. | DOI | MR | Zbl

[4] M. J. Borges, Heteroclinic and homoclinic solutions for a singular Hamiltonian system, European J. Appl. Math., 17 (2006), 1-32. | DOI | MR | Zbl

[5] P. Caldiroli - L. Jeanjean, Homoclinics and heteroclinics for a class of conservative singular Hamiltonian systems, J. Differential Equations, 136 (1997), 76-114. | DOI | MR | Zbl

[6] P. Caldiroli - M. Nolasco, Multiple homoclinic solutions for a class of autonomous singular systems in $\mathbf{R}^{2}$, Ann. Inst. H. PoincarÂe Anal. Non Linéaire, 15 (1998), 113-125. | fulltext EuDML | DOI | MR

[7] P. Felmer - K. Tanaka, Hyperbolic-like solutions for singular Hamiltonian systems, NoDEA Nonlinear Differential Equations Appl., 7 (2000), 43-65. | DOI | MR | Zbl

[8] P. Felmer - K. Tanaka, Scattering solutions for planar singular Hamiltonian systems via minimization, Adv. Differential Equations, 5 (2000), 1519-1544. | MR | Zbl

[9] W. B. Gordon, Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc., 204 (1975), 113-135. | DOI | MR | Zbl

[10] C. Greco, Periodic solutions of a class of singular Hamiltonian systems, Nonlinear Anal., 12 (1988), 259-269. | DOI | MR | Zbl

[11] M. Izydorek - J. Janczewska, Homoclinic solutions for a class of the second order Hamiltonian systems, J. Differential Equations, 219 (2005), 375-389. | DOI | MR | Zbl

[12] M. Izydorek - J. Janczewska, Heteroclinic solutions for a class of the second order Hamiltonian systems, J. Differential Equations, 238 (2007), 381-393. | DOI | MR | Zbl

[13] P. H. Rabinowitz, Periodic and heteroclinic orbits for a periodic Hamiltonian system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 331-346. | fulltext EuDML | MR | Zbl

[14] P. H. Rabinowitz, Homoclinics for a singular Hamiltonian system, in Geometric analysis and the calculus of variations, Int. Press, Cambridge, MA, (1996), 267-296. | MR | Zbl

[15] E. Serra - S. Terracini, Noncollision solutions to some singular minimization problems with Keplerian-like potentials, Nonlinear Anal., 22 (1994), 45-62. | DOI | MR | Zbl

[16] E. Serra, Homoclinic orbits at infinity for second order conservative systems, NoDEA Nonlinear Differential Equations Appl., 1 (1994), 249-266. | DOI | MR | Zbl

[17] E. Serra, Heteroclinic orbits at infinity for two classes of Hamiltonian systems, Boll. Un. Mat. Ital. Sect. B (7), 8 (1994), 615-639. | MR | Zbl

[18] K. Tanaka, Homoclinic orbits for a singular second order Hamiltonian system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 7 (1990), 427-438. | fulltext EuDML | DOI | MR | Zbl