$L^{2}$-Singular Dichotomy for Orbital Measures on Complex Groups
Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 3, pp. 409-419

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

It is known that all continuous orbital measures, $\mu$ on a compact, connected, classical simple Lie group $G$ or its Lie algebra satisfy a dichotomy: either $\mu^{k} \in L^{2}$ or $\mu^{k}$ is purely singular to Haar measure. In this note we prove that the same dichotomy holds for the dual situation, continuous orbital measures on the complex group $G^C$. We also determine the sharp exponent $k$ such that any $k$-fold convolution product of continuous $G$-bi-invariant measures on $G^{C}$ is absolute continuous with respect to Haar measure.
@article{BUMI_2010_9_3_3_a0,
     author = {Gupta, S. K. and Hare, K. E.},
     title = {$L^{2}${-Singular} {Dichotomy} for {Orbital} {Measures} on {Complex} {Groups}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {409--419},
     publisher = {mathdoc},
     volume = {Ser. 9, 3},
     number = {3},
     year = {2010},
     zbl = {1217.22008},
     mrnumber = {2742774},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a0/}
}
TY  - JOUR
AU  - Gupta, S. K.
AU  - Hare, K. E.
TI  - $L^{2}$-Singular Dichotomy for Orbital Measures on Complex Groups
JO  - Bollettino della Unione matematica italiana
PY  - 2010
SP  - 409
EP  - 419
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a0/
LA  - en
ID  - BUMI_2010_9_3_3_a0
ER  - 
%0 Journal Article
%A Gupta, S. K.
%A Hare, K. E.
%T $L^{2}$-Singular Dichotomy for Orbital Measures on Complex Groups
%J Bollettino della Unione matematica italiana
%D 2010
%P 409-419
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a0/
%G en
%F BUMI_2010_9_3_3_a0
Gupta, S. K.; Hare, K. E. $L^{2}$-Singular Dichotomy for Orbital Measures on Complex Groups. Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 3, pp. 409-419. http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a0/