Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2010_9_3_3_a0, author = {Gupta, S. K. and Hare, K. E.}, title = {$L^{2}${-Singular} {Dichotomy} for {Orbital} {Measures} on {Complex} {Groups}}, journal = {Bollettino della Unione matematica italiana}, pages = {409--419}, publisher = {mathdoc}, volume = {Ser. 9, 3}, number = {3}, year = {2010}, zbl = {1217.22008}, mrnumber = {2742774}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a0/} }
TY - JOUR AU - Gupta, S. K. AU - Hare, K. E. TI - $L^{2}$-Singular Dichotomy for Orbital Measures on Complex Groups JO - Bollettino della Unione matematica italiana PY - 2010 SP - 409 EP - 419 VL - 3 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a0/ LA - en ID - BUMI_2010_9_3_3_a0 ER -
Gupta, S. K.; Hare, K. E. $L^{2}$-Singular Dichotomy for Orbital Measures on Complex Groups. Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 3, pp. 409-419. http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a0/
[1] Lie Groups beyond an introduction, Birkhauser Verlag AG (2002). | MR | Zbl
,[2] Characterisation of $G$-invariant Fourier algebras, Un. Boll. Mat. Ital., 9 (1995), 37-45. | MR | Zbl
- ,[3] Singularity of orbits in classical Lie algebras, Geom. Func. Anal., 13 (2003), 815-844. | DOI | MR | Zbl
- ,[4] $L^{2}$-singular dichotomy for orbital measures of classical compact Lie groups, Adv. Math, 222 (2009), 1521-1573. | DOI | MR | Zbl
- ,[5] $L^{2}$-singular dichotomy for orbital measures of classical simple Lie algebras, Math. Zeit., 262 (2009), 91-124. | DOI | MR | Zbl
, - - ,[6] Differential geometry, Lie groups and symmetric spaces, Academic Press, New York (1978). | MR | Zbl
,[7] Central measures on compact simple Lie groups, J. Func. Anal., 10 (1972), 212-229. | MR | Zbl
,[8] Zonal measure algebras on isotropy irreducible homogeneous spaces, J. Func. Anal., 17 (1974), 355-376. | MR | Zbl
,[9] Harmonic analysis on nilpotent groups and singular integrals II. Singular kernels supported on submanifolds, J. Func. Anal., 78 (1988), 56-84. | DOI | MR | Zbl
- ,[10] Lie groups and Lie algebras and their representations, Springer-Verlag, New York (1984). | DOI | MR | Zbl
,