$L^{2}$-Singular Dichotomy for Orbital Measures on Complex Groups
Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 3, pp. 409-419.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

It is known that all continuous orbital measures, $\mu$ on a compact, connected, classical simple Lie group $G$ or its Lie algebra satisfy a dichotomy: either $\mu^{k} \in L^{2}$ or $\mu^{k}$ is purely singular to Haar measure. In this note we prove that the same dichotomy holds for the dual situation, continuous orbital measures on the complex group $G^C$. We also determine the sharp exponent $k$ such that any $k$-fold convolution product of continuous $G$-bi-invariant measures on $G^{C}$ is absolute continuous with respect to Haar measure.
@article{BUMI_2010_9_3_3_a0,
     author = {Gupta, S. K. and Hare, K. E.},
     title = {$L^{2}${-Singular} {Dichotomy} for {Orbital} {Measures} on {Complex} {Groups}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {409--419},
     publisher = {mathdoc},
     volume = {Ser. 9, 3},
     number = {3},
     year = {2010},
     zbl = {1217.22008},
     mrnumber = {2742774},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a0/}
}
TY  - JOUR
AU  - Gupta, S. K.
AU  - Hare, K. E.
TI  - $L^{2}$-Singular Dichotomy for Orbital Measures on Complex Groups
JO  - Bollettino della Unione matematica italiana
PY  - 2010
SP  - 409
EP  - 419
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a0/
LA  - en
ID  - BUMI_2010_9_3_3_a0
ER  - 
%0 Journal Article
%A Gupta, S. K.
%A Hare, K. E.
%T $L^{2}$-Singular Dichotomy for Orbital Measures on Complex Groups
%J Bollettino della Unione matematica italiana
%D 2010
%P 409-419
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a0/
%G en
%F BUMI_2010_9_3_3_a0
Gupta, S. K.; Hare, K. E. $L^{2}$-Singular Dichotomy for Orbital Measures on Complex Groups. Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 3, pp. 409-419. http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a0/

[1] A. W. Knapp, Lie Groups beyond an introduction, Birkhauser Verlag AG (2002). | MR | Zbl

[2] A. Dooley - F. Ricci, Characterisation of $G$-invariant Fourier algebras, Un. Boll. Mat. Ital., 9 (1995), 37-45. | MR | Zbl

[3] S. Gupta - K. Hare, Singularity of orbits in classical Lie algebras, Geom. Func. Anal., 13 (2003), 815-844. | DOI | MR | Zbl

[4] S. Gupta - K. Hare, $L^{2}$-singular dichotomy for orbital measures of classical compact Lie groups, Adv. Math, 222 (2009), 1521-1573. | DOI | MR | Zbl

[5] S. Gupta, - K. Hare - S. Seyfaddini, $L^{2}$-singular dichotomy for orbital measures of classical simple Lie algebras, Math. Zeit., 262 (2009), 91-124. | DOI | MR | Zbl

[6] S. Helgason, Differential geometry, Lie groups and symmetric spaces, Academic Press, New York (1978). | MR | Zbl

[7] D. Ragozin, Central measures on compact simple Lie groups, J. Func. Anal., 10 (1972), 212-229. | MR | Zbl

[8] D. Ragozin, Zonal measure algebras on isotropy irreducible homogeneous spaces, J. Func. Anal., 17 (1974), 355-376. | MR | Zbl

[9] F. Ricci - E. Stein, Harmonic analysis on nilpotent groups and singular integrals II. Singular kernels supported on submanifolds, J. Func. Anal., 78 (1988), 56-84. | DOI | MR | Zbl

[10] V. S. Varadarajan, Lie groups and Lie algebras and their representations, Springer-Verlag, New York (1984). | DOI | MR | Zbl