$L^{2}$-Singular Dichotomy for Orbital Measures on Complex Groups
Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 3, pp. 409-419
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
It is known that all continuous orbital measures, $\mu$ on a compact, connected, classical simple Lie group $G$ or its Lie algebra satisfy a dichotomy: either $\mu^{k} \in L^{2}$ or $\mu^{k}$ is purely singular to Haar measure. In this note we prove that the same dichotomy holds for the dual situation, continuous orbital measures on the complex group $G^C$. We also determine the sharp exponent $k$ such that any $k$-fold convolution product of continuous $G$-bi-invariant measures on $G^{C}$ is absolute continuous with respect to Haar measure.
@article{BUMI_2010_9_3_3_a0,
author = {Gupta, S. K. and Hare, K. E.},
title = {$L^{2}${-Singular} {Dichotomy} for {Orbital} {Measures} on {Complex} {Groups}},
journal = {Bollettino della Unione matematica italiana},
pages = {409--419},
year = {2010},
volume = {Ser. 9, 3},
number = {3},
zbl = {1217.22008},
mrnumber = {2742774},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a0/}
}
TY - JOUR
AU - Gupta, S. K.
AU - Hare, K. E.
TI - $L^{2}$-Singular Dichotomy for Orbital Measures on Complex Groups
JO - Bollettino della Unione matematica italiana
PY - 2010
SP - 409
EP - 419
VL - 3
IS - 3
UR - http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a0/
LA - en
ID - BUMI_2010_9_3_3_a0
ER -
Gupta, S. K.; Hare, K. E. $L^{2}$-Singular Dichotomy for Orbital Measures on Complex Groups. Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 3, pp. 409-419. http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a0/