Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2010_9_3_2_a9, author = {Soravia, Pierpaolo}, title = {Viscosity and {Almost} {Everywhere} {Solutions} of {First-Order} {Carnot-Carath\`eodory} {Hamilton-Jacobi} {Equations}}, journal = {Bollettino della Unione matematica italiana}, pages = {391--406}, publisher = {mathdoc}, volume = {Ser. 9, 3}, number = {2}, year = {2010}, zbl = {1195.49034}, mrnumber = {2666366}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_2_a9/} }
TY - JOUR AU - Soravia, Pierpaolo TI - Viscosity and Almost Everywhere Solutions of First-Order Carnot-Carathèodory Hamilton-Jacobi Equations JO - Bollettino della Unione matematica italiana PY - 2010 SP - 391 EP - 406 VL - 3 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_2_a9/ LA - en ID - BUMI_2010_9_3_2_a9 ER -
%0 Journal Article %A Soravia, Pierpaolo %T Viscosity and Almost Everywhere Solutions of First-Order Carnot-Carathèodory Hamilton-Jacobi Equations %J Bollettino della Unione matematica italiana %D 2010 %P 391-406 %V 3 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_2_a9/ %G en %F BUMI_2010_9_3_2_a9
Soravia, Pierpaolo. Viscosity and Almost Everywhere Solutions of First-Order Carnot-Carathèodory Hamilton-Jacobi Equations. Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 2, pp. 391-406. http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_2_a9/
[1] Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Birkhäuser, 1997. | DOI | MR | Zbl
- ,[2] Hamilton-Jacobi equations with a singular boundary condition on a free boundary and applications to differential games, Trans. Am. Math. Soc., 325 (1991), 205-229. | DOI | MR | Zbl
- ,[3] On $\infty$-harmonic functions on the Heisenberg group, Comm. in PDE, 27 (2002), 727-761. | DOI | MR | Zbl
,[4] Stratified Lie groups and potential theory for their sub-Laplacians, Springer Monographs in Mathematics (Springer, Berlin, 2007). | MR | Zbl
- - ,[5] User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27, no. 1 (1992), 1-67. | DOI | MR | Zbl
- - ,[6] Viscosity solutions of Hamilton Jacobi equations, Trans. Amer. Math. Soc., 277 (1983), 1-42. | DOI | MR | Zbl
- ,[7] Limiting behavior of solutions of subelliptic heat equations, NoDEA Nonlinear Differential Equations Appl., 14 (2007), 429-441. | DOI | MR | Zbl
,[8] Metric Hopf-Lax formula with semicontinuous data. Discrete Contin. Dyn. Syst., 17 (2007), 713-729. | DOI | MR | Zbl
,[9] Meyers-Serrin type theorems and relaxation of variational integrals depending on vector fields, Houston J. Math., 22 (1996), 859-890. | MR | Zbl
- - ,[10] Approximation and imbedding theorems for weighted Sobolev spaces associated with Lipschitz continuous vector fields, Boll. Un. Mat. Ital. B, 11 (1997), 83-117. | MR | Zbl
- - ,[11] Definitions of Sobolev classes on metric spaces, Ann. Inst. Fourier (Grenoble), 49 (1999), 1903-1924. | fulltext EuDML | MR | Zbl
- - ,[12] Representation formulas for solutions of the HJI equations with discontinuous coefficients and existence of value in differential games, J. Optim. Theory Appl., 130 (2006), 209-229. | DOI | MR | Zbl
- ,[13] Lipschitz continuity, global smooth approximations and extensions theorems for Sobolev functions in Carnot-Carathèodory spaces, J. d'Analyse Mathematique, 74 (1998), 67-97. | DOI | MR | Zbl
- ,[14] Generalized solutions of Hamilton-Jacobi equations, Research Notes in Mathematics, 69 Pitman, Boston, Mass.-London, 1982. | MR | Zbl
,[15] Distances, boundaries and surface measures in Carnot-Carathèodory spaces, PhD Thesis Series 31, Dipartimento di Matematica Università degli Studi di Trento, 2001.
,[16] Surface measures in Carnot-Carathèodory spaces, Calc. Var. Partial Differential Equations 13, no. 3 (2001), 339-376. | DOI | MR | Zbl
- ,[17] Métriques de Carnot-Carathèodory et quasiisomtries des espaces symetriques de rang un, Ann. of Math., 129 (1989), 1-60. | DOI | MR
,[18] Optimality principles and representation formulas for viscosity solutions of Hamilton-Jacobi equations. II. Equations of control problems with state constraints, Differential Integral Equations, 12, no. 2 (1999), 275-293. | MR | Zbl
,[19] Comparison with generalized cones, existence of absolute minimizers and viscosity solutions of space dependent Aronsson equations, preprint. | DOI | MR | Zbl
,[20] The Aronsson equation for absolute minimizers of L1-functionals associated with vector fields satisfying Hormander's condition, Trans. Amer. Math. Soc., 359 (2007), 91-113. | DOI | MR | Zbl
,