Viscosity and Almost Everywhere Solutions of First-Order Carnot-Carathèodory Hamilton-Jacobi Equations
Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 2, pp. 391-406.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We consider viscosity and distributional derivatives of functions in the directions of a family of vector fields, generators of a Carnot-Carathèodory (C-C in brief) metric. In the framework of convex and non coercive Hamilton-Jacobi equations of C-C type we show that viscosity and a.e. subsolutions are equivalent concepts. The latter is a concept related to Lipschitz continuity with respect to the metric generated by the family of vector fields. Under more restrictive assumptions that include Carnot groups, we prove that viscosity solutions of C-C HJ equations are Lipschitz continuous with respect to the corresponding Carnot-Carathèodory metric and satisfy the equation a.e.
@article{BUMI_2010_9_3_2_a9,
     author = {Soravia, Pierpaolo},
     title = {Viscosity and {Almost} {Everywhere} {Solutions} of {First-Order} {Carnot-Carath\`eodory} {Hamilton-Jacobi} {Equations}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {391--406},
     publisher = {mathdoc},
     volume = {Ser. 9, 3},
     number = {2},
     year = {2010},
     zbl = {1195.49034},
     mrnumber = {2666366},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_2_a9/}
}
TY  - JOUR
AU  - Soravia, Pierpaolo
TI  - Viscosity and Almost Everywhere Solutions of First-Order Carnot-Carathèodory Hamilton-Jacobi Equations
JO  - Bollettino della Unione matematica italiana
PY  - 2010
SP  - 391
EP  - 406
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_2_a9/
LA  - en
ID  - BUMI_2010_9_3_2_a9
ER  - 
%0 Journal Article
%A Soravia, Pierpaolo
%T Viscosity and Almost Everywhere Solutions of First-Order Carnot-Carathèodory Hamilton-Jacobi Equations
%J Bollettino della Unione matematica italiana
%D 2010
%P 391-406
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_2_a9/
%G en
%F BUMI_2010_9_3_2_a9
Soravia, Pierpaolo. Viscosity and Almost Everywhere Solutions of First-Order Carnot-Carathèodory Hamilton-Jacobi Equations. Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 2, pp. 391-406. http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_2_a9/

[1] M. Bardi - I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Birkhäuser, 1997. | DOI | MR | Zbl

[2] M. Bardi - P. Soravia, Hamilton-Jacobi equations with a singular boundary condition on a free boundary and applications to differential games, Trans. Am. Math. Soc., 325 (1991), 205-229. | DOI | MR | Zbl

[3] T. Bieske, On $\infty$-harmonic functions on the Heisenberg group, Comm. in PDE, 27 (2002), 727-761. | DOI | MR | Zbl

[4] A. Bonfiglioli - E. Lanconelli - F. Uguzzoni, Stratified Lie groups and potential theory for their sub-Laplacians, Springer Monographs in Mathematics (Springer, Berlin, 2007). | MR | Zbl

[5] M. G. Crandall - H. Ishii - P. L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27, no. 1 (1992), 1-67. | DOI | MR | Zbl

[6] M. G. Crandall - P. L. Lions, Viscosity solutions of Hamilton Jacobi equations, Trans. Amer. Math. Soc., 277 (1983), 1-42. | DOI | MR | Zbl

[7] F. Dragoni, Limiting behavior of solutions of subelliptic heat equations, NoDEA Nonlinear Differential Equations Appl., 14 (2007), 429-441. | DOI | MR | Zbl

[8] F. Dragoni, Metric Hopf-Lax formula with semicontinuous data. Discrete Contin. Dyn. Syst., 17 (2007), 713-729. | DOI | MR | Zbl

[9] B. Franchi - R. Serapioni - F. Serra Cassano, Meyers-Serrin type theorems and relaxation of variational integrals depending on vector fields, Houston J. Math., 22 (1996), 859-890. | MR | Zbl

[10] B. Franchi - R. Serapioni - F. Serra Cassano, Approximation and imbedding theorems for weighted Sobolev spaces associated with Lipschitz continuous vector fields, Boll. Un. Mat. Ital. B, 11 (1997), 83-117. | MR | Zbl

[11] B. Franchi - P. Hajlasz - P. Koskela, Definitions of Sobolev classes on metric spaces, Ann. Inst. Fourier (Grenoble), 49 (1999), 1903-1924. | fulltext EuDML | MR | Zbl

[12] M. Garavello - P. Soravia, Representation formulas for solutions of the HJI equations with discontinuous coefficients and existence of value in differential games, J. Optim. Theory Appl., 130 (2006), 209-229. | DOI | MR | Zbl

[13] N. Garofalo - D. M. Nhieu, Lipschitz continuity, global smooth approximations and extensions theorems for Sobolev functions in Carnot-Carathèodory spaces, J. d'Analyse Mathematique, 74 (1998), 67-97. | DOI | MR | Zbl

[14] P. L. Lions, Generalized solutions of Hamilton-Jacobi equations, Research Notes in Mathematics, 69 Pitman, Boston, Mass.-London, 1982. | MR | Zbl

[15] R. Monti, Distances, boundaries and surface measures in Carnot-Carathèodory spaces, PhD Thesis Series 31, Dipartimento di Matematica Università degli Studi di Trento, 2001.

[16] R. Monti - F. Serra Cassano, Surface measures in Carnot-Carathèodory spaces, Calc. Var. Partial Differential Equations 13, no. 3 (2001), 339-376. | DOI | MR | Zbl

[17] P. Pansu, Métriques de Carnot-Carathèodory et quasiisomtries des espaces symetriques de rang un, Ann. of Math., 129 (1989), 1-60. | DOI | MR

[18] P. Soravia, Optimality principles and representation formulas for viscosity solutions of Hamilton-Jacobi equations. II. Equations of control problems with state constraints, Differential Integral Equations, 12, no. 2 (1999), 275-293. | MR | Zbl

[19] P. Soravia, Comparison with generalized cones, existence of absolute minimizers and viscosity solutions of space dependent Aronsson equations, preprint. | DOI | MR | Zbl

[20] C. Wang, The Aronsson equation for absolute minimizers of L1-functionals associated with vector fields satisfying Hormander's condition, Trans. Amer. Math. Soc., 359 (2007), 91-113. | DOI | MR | Zbl