Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2010_9_3_2_a8, author = {\v{C}ern\'y, Robert}, title = {Note on the {Lower} {Semicontinuity} with {Respect} to the {Weak} {Topology} on $W^{1,p}(\Omega)$}, journal = {Bollettino della Unione matematica italiana}, pages = {381--390}, publisher = {mathdoc}, volume = {Ser. 9, 3}, number = {2}, year = {2010}, zbl = {1196.49010}, mrnumber = {2666365}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_2_a8/} }
TY - JOUR AU - Černý, Robert TI - Note on the Lower Semicontinuity with Respect to the Weak Topology on $W^{1,p}(\Omega)$ JO - Bollettino della Unione matematica italiana PY - 2010 SP - 381 EP - 390 VL - 3 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_2_a8/ LA - en ID - BUMI_2010_9_3_2_a8 ER -
Černý, Robert. Note on the Lower Semicontinuity with Respect to the Weak Topology on $W^{1,p}(\Omega)$. Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 2, pp. 381-390. http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_2_a8/
[1] Integral functionals that are continuous with respect to the weak topology on $W^{1,p}_{0}(\Omega)$, Nonlinear Anal., 71 (2009), 2753-2763. | DOI | MR | Zbl
- - ,[2] Direct Methods in the Calculus of Variations (Springer, 1989). | DOI | MR | Zbl
,[3] Weak Continuity and Weak Lower Semicontinuity of Non-Linear Functionals (Springer, 1982). | MR | Zbl
,[4] Integral functionals that are continuous with respect to the weak topology on $W^{1,p}_{0}(\Omega)$, Nonlinear Anal., 63 (2005), 81-87. | DOI | MR
- - ,[5] Weakly differentiable functions. Sobolev spaces and functions of bounded variation, Graduate Texts in Mathematics, 120 (Springer-Verlag, New York, 1989). | DOI | MR | Zbl
,