Coactions of Hopf Algebras on Algebras in Positive Characteristic
Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 2, pp. 349-361

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Let $K$ be a field of positive characteristic $p > 0$. We study the coactions of the Hopf algebra of the multiplicative group $H_{m}$ with underlying algebra $H = K \left[ X_{1},\cdots,X_{n} \right] / (X_{1}^{p^{s_{1}}},\cdots,X_{n}^{p^{s_{n}}})$, $n \ge 1$, $s_{1}\ge \cdots \ge s_{n} \ge 1$ on a $K$-algebra $A$. We give the rule for the set of additive endomorphism of $A$, that define a coaction of $H_{m}$ on $A$ commutative. For $s_{1} = \cdots = s_{n} = 1$, we obtain the explicit expression of such coactions in terms of $n$ derivations of $A$.
@article{BUMI_2010_9_3_2_a6,
     author = {Crupi, Marilena and Restuccia, Gaetana},
     title = {Coactions of {Hopf} {Algebras} on {Algebras} in {Positive} {Characteristic}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {349--361},
     publisher = {mathdoc},
     volume = {Ser. 9, 3},
     number = {2},
     year = {2010},
     zbl = {1216.16019},
     mrnumber = {2666363},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_2_a6/}
}
TY  - JOUR
AU  - Crupi, Marilena
AU  - Restuccia, Gaetana
TI  - Coactions of Hopf Algebras on Algebras in Positive Characteristic
JO  - Bollettino della Unione matematica italiana
PY  - 2010
SP  - 349
EP  - 361
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_2_a6/
LA  - en
ID  - BUMI_2010_9_3_2_a6
ER  - 
%0 Journal Article
%A Crupi, Marilena
%A Restuccia, Gaetana
%T Coactions of Hopf Algebras on Algebras in Positive Characteristic
%J Bollettino della Unione matematica italiana
%D 2010
%P 349-361
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_2_a6/
%G en
%F BUMI_2010_9_3_2_a6
Crupi, Marilena; Restuccia, Gaetana. Coactions of Hopf Algebras on Algebras in Positive Characteristic. Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 2, pp. 349-361. http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_2_a6/