Coactions of Hopf Algebras on Algebras in Positive Characteristic
Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 2, pp. 349-361.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Let $K$ be a field of positive characteristic $p > 0$. We study the coactions of the Hopf algebra of the multiplicative group $H_{m}$ with underlying algebra $H = K \left[ X_{1},\cdots,X_{n} \right] / (X_{1}^{p^{s_{1}}},\cdots,X_{n}^{p^{s_{n}}})$, $n \ge 1$, $s_{1}\ge \cdots \ge s_{n} \ge 1$ on a $K$-algebra $A$. We give the rule for the set of additive endomorphism of $A$, that define a coaction of $H_{m}$ on $A$ commutative. For $s_{1} = \cdots = s_{n} = 1$, we obtain the explicit expression of such coactions in terms of $n$ derivations of $A$.
@article{BUMI_2010_9_3_2_a6,
     author = {Crupi, Marilena and Restuccia, Gaetana},
     title = {Coactions of {Hopf} {Algebras} on {Algebras} in {Positive} {Characteristic}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {349--361},
     publisher = {mathdoc},
     volume = {Ser. 9, 3},
     number = {2},
     year = {2010},
     zbl = {1216.16019},
     mrnumber = {2666363},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_2_a6/}
}
TY  - JOUR
AU  - Crupi, Marilena
AU  - Restuccia, Gaetana
TI  - Coactions of Hopf Algebras on Algebras in Positive Characteristic
JO  - Bollettino della Unione matematica italiana
PY  - 2010
SP  - 349
EP  - 361
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_2_a6/
LA  - en
ID  - BUMI_2010_9_3_2_a6
ER  - 
%0 Journal Article
%A Crupi, Marilena
%A Restuccia, Gaetana
%T Coactions of Hopf Algebras on Algebras in Positive Characteristic
%J Bollettino della Unione matematica italiana
%D 2010
%P 349-361
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_2_a6/
%G en
%F BUMI_2010_9_3_2_a6
Crupi, Marilena; Restuccia, Gaetana. Coactions of Hopf Algebras on Algebras in Positive Characteristic. Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 2, pp. 349-361. http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_2_a6/

[1] V. Bonanzinga - H. Matsumura, $F_{m}$-integrable derivations, Communications in Algebra, 25 (12) (1997), 4039-4046. | DOI | MR

[2] M. Crupi, Subring of constants of a ring of cha caracteristic $p > 0$, Le matematiche, XLVIII, No 2 (1993), 203-212. | MR | Zbl

[3] H. Matsumura, Commutative Algebra, 2nd ed., Benjamin Inc. (New York, 1980). | MR

[4] H. Matsumura, Commutative Ring Theory, Cambridge University Press, 1986. | MR | Zbl

[5] S. Montgomery, Hopf algebras and their actions on Rings, CBSM, Lecture notes, 82, AMS, 1993. | DOI | MR

[6] F. Oort - D. Mumford, Deformations and liftings of finite, cocommutative group schemes, Invent. Math., 5 (1968), 477-489. | fulltext EuDML | DOI | MR | Zbl

[7] G. Restuccia - H.-J. Schneider, On actions of infinitesimal group schemes, J. Algebra 261 (2003), 229-244. | DOI | MR | Zbl

[8] G. Restuccia - H.-J. Schneider, On actions of the additive group on the Weyl algebra, Atti dell'Accademia Peloritana dei Pericolanti di Messina, Classe di Scienze Matematiche, Fisiche e Naturali, LXXXIII. ISSN: 0365-0359. C1A0501007.

[9] G. Restuccia - A. Tyc, Regularity of the ring of invariants under certain actions of finite abelian Hopf algebras in characteristic $p > 0$, J. of Algebra, 159 , No. 2 (1993), 347-357. | DOI | MR | Zbl

[10] H.-J. Schneider, Principal homogeneous spaces for arbitrary Hopf algebras, Israel J. Math., 72 (1990), 167-195. | DOI | MR | Zbl

[11] A. Tyc, $p$-basis and smoothness in characteristc $p > 0$, Proc. Am. Math. Soc., 103 (1998), 389-394. | DOI | MR

[12] W. C. Waterhouse, Introduction to Affine Group Schemes, in: Grad Texts in Math., Vol 66 (Springer, 1979). | MR