Multipliers on Pseudoconvex Domains with Real Analytic Boundaries
Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 2, pp. 309-324.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

This paper is concerned with (weakly) pseudoconvex real analytic hypersurfaces in $\mathbf{C}^{n}$. We are motivated by the study of local boundary regularity of the $\bar\partial$-Neumann problem. Subelliptic estimates in a neighborhood of a point $P$ in the boundary (which imply regularity) are controlled by ideals of germs of real analytic functions $I^{1}(P),\cdots, I^{n-1}(P)$. These ideals have the property that a subelliptic estimate holds for $(p,q)$-forms in a neighborhood of $P$ if and only if $1 \in I^{q}(P)$. The geometrical meaning of this is that $1 \in I^{q}(P)$ if and only if there is a neighborhood of $P$ such that there does not exist a $q$-dimensional complex analytic manifold contained in the intersection of this neighborhood. Here we present a method to construct these manifolds explicitly. That is, if $1 \notin I^{q}(P)$ then in every neighborhood of $P$ we give an explicit construction of such a manifold. This result is part of a program to give a more precise understanding of regularity in terms of various norms. The techniques should also be useful in the study of other systems of partial differential equations.
@article{BUMI_2010_9_3_2_a3,
     author = {Kohn, Joseph J.},
     title = {Multipliers on {Pseudoconvex} {Domains} with {Real} {Analytic} {Boundaries}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {309--324},
     publisher = {mathdoc},
     volume = {Ser. 9, 3},
     number = {2},
     year = {2010},
     zbl = {1211.32020},
     mrnumber = {2666360},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_2_a3/}
}
TY  - JOUR
AU  - Kohn, Joseph J.
TI  - Multipliers on Pseudoconvex Domains with Real Analytic Boundaries
JO  - Bollettino della Unione matematica italiana
PY  - 2010
SP  - 309
EP  - 324
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_2_a3/
LA  - en
ID  - BUMI_2010_9_3_2_a3
ER  - 
%0 Journal Article
%A Kohn, Joseph J.
%T Multipliers on Pseudoconvex Domains with Real Analytic Boundaries
%J Bollettino della Unione matematica italiana
%D 2010
%P 309-324
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_2_a3/
%G en
%F BUMI_2010_9_3_2_a3
Kohn, Joseph J. Multipliers on Pseudoconvex Domains with Real Analytic Boundaries. Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 2, pp. 309-324. http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_2_a3/

[BF] E. Bedford - J. E. Fornaess, Complex manifolds in pseudoconvex boundaries, Duke Math. J., 48 (1981), 279-288. | MR | Zbl

[C1] D. Catlin, Necessary conditions for subellipticity of the $\bar\partial$-Neumann problem, Ann. Math., 120 (1983), 147-171. | DOI | MR | Zbl

[C2] D. Catlin, Subelliptic estimates for the $\bar\partial$-Neumann problem on pseudoconvex domains, Ann. Math., 126 (1987), 131-191. | DOI | MR | Zbl

[CS] S.-C. Chen - M.-C. Shaw, Partial Differential Equations in Several Complex Variables, AMS/IP Studies in Advanced Mathematics, vol. 19 (2000), International Press. | MR

[D'A] J. P. D'Angelo, Real hypersurfaces, order of contact, and applications, Ann. Math., 115 (1982), 615-637. | DOI | MR | Zbl

[DF] K. Diederich - J. E. Fornaess, Pseudoconvex domains with real analytic boundary, Ann. Math., 107 (1978), 371-384. | MR | Zbl

[G] P. C. Greiner, On subelliptic estimates of the $\bar\partial$-Neumann problem in $\mathbf{C}^{2}$, J. Differential Geom., 9 (1974), 239-250. | MR | Zbl

[K1] J. J. Kohn, Harmonic integrals on strongly pseudoconvex manifolds I, Ann. Math., 78 (1963), 112-148, II, Ann. Math., 79 (1964), 450-472. | DOI | MR | Zbl

[K2] J. J. Kohn, Boundary behavior of $\bar\partial$ on weakly pseudo-convex manifolds of dimension two, J. Differential Geom., 6 (1972), 523-542. | MR | Zbl

[K3] J. J. Kohn, Subellipticity of the $\bar\partial$-Neumann problem on pseudoconvex domains: sufficient conditions, Acta Math., 142 (1979), 79-122. | DOI | MR | Zbl

[KN] J. J. Kohn - L. Nirenberg, Noncoercive boundary value problems, Comm. Pure Appl. Math., 18 (1965), 443-492. | DOI | MR | Zbl

[M] C. B. Morrey, The analytic embedding of abstract real analytic manifolds, Ann. Math., 40 (1958), 62-70. | DOI | MR | Zbl

[N] R. Narasimhan, Introduction to the theory of analytic spaces, Lecture notes in Math., No. 25 (Springer Verlag, 1966). | MR

[Si] Y.-T. Siu, Effective termination of Kohn's algorithm for subeliptic multipliers, arXiv; 0706.411v2 [math CV] 11 Jul 2008. | DOI | MR

[St] E. J. Straube, Lectures on the $L^{2}$-Sobolev Theory of the $\bar\partial$-Neumann Problem, preprint (2009). | DOI | MR