Transversally Pseudoconvex Foliations
Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 2, pp. 267-279.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We consider real analytic foliations $X$ with complex leaves of transversal dimension one and we give the notion of transversal pseudoconvexity. This amounts to require that the transverse bundle $N_{F}$ to the leaves carries a metric $\{\lambda_{j}\}$ on the the fibres such that the tangential (1,1)-form $\Omega = \{\lambda_{j} \bar{\partial}\partial\lambda_{j} - 2\bar{\partial}\lambda_{j}\partial\lambda_{j}\}$ is positive. This condition is of a special interest if the foliation $X$ is 1 complete i.e. admits a smooth exhaustion function $\phi$ which is strongly plusubharmonic along the leaves. In this situation we prove that there exist an open neighbourhood $U$ of $X$ in the complexification $\widetilde{X}$ of $X$ and a non negative smooth function $u : U \to \mathbf{R}$ which is plurisubharmonic in $U$, strongly plurisubharmonic on $U \setminus X$ and such that $X$ is the zero set of $u$. This result has many implications: every compact sublevel $\overline X_{c} = \{ x \in X : \phi \le c \}$ is a Stein compact and if $S(X)$ is the algebra of smooth CR functions on $X$, the restriction map $S(X) \to S(X_{c})$ has a dense image (Theorem 4.1); a transversally pseudoconvex, 1-complete, real analytic foliation $X$ with complex leaves of dimension $n$ properly embeds in $\mathbf{C}^{2n+3}$ by a CR map and the sheaf $S = S_{X}$ of germs of smooth CR functions on $X$ is cohomologically trivial.
@article{BUMI_2010_9_3_2_a1,
     author = {Tomassini, Giuseppe and Venturini, Sergio},
     title = {Transversally {Pseudoconvex} {Foliations}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {267--279},
     publisher = {mathdoc},
     volume = {Ser. 9, 3},
     number = {2},
     year = {2010},
     zbl = {1197.32014},
     mrnumber = {2666358},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_2_a1/}
}
TY  - JOUR
AU  - Tomassini, Giuseppe
AU  - Venturini, Sergio
TI  - Transversally Pseudoconvex Foliations
JO  - Bollettino della Unione matematica italiana
PY  - 2010
SP  - 267
EP  - 279
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_2_a1/
LA  - en
ID  - BUMI_2010_9_3_2_a1
ER  - 
%0 Journal Article
%A Tomassini, Giuseppe
%A Venturini, Sergio
%T Transversally Pseudoconvex Foliations
%J Bollettino della Unione matematica italiana
%D 2010
%P 267-279
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_2_a1/
%G en
%F BUMI_2010_9_3_2_a1
Tomassini, Giuseppe; Venturini, Sergio. Transversally Pseudoconvex Foliations. Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 2, pp. 267-279. http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_2_a1/

[1] A. Andreotti - H. Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France, 90 (1962), 193-259. | fulltext EuDML | MR | Zbl

[2] M. Freeman, Tangential Cauchy-Riemann equations and uniform approximation, Pacific J. Math., 33 (1970), 101-108. | MR | Zbl

[3] G. Gigante - G. Tomassini, Foliations with complex leaves, Diff. Geom. Appl., 5 (1995), 33-49. | DOI | MR | Zbl

[4] L. Hörmander, An introduction to complex analysis in several variables, D. Van Nostrand, Princeton (New Yersey, 1965). | MR

[5] J. J. Kohn, Global regulatity for $\bar\partial$ on weakly pseudo convex manifolds, Trans. Am. Math. Soc., 181 (1962), 193-259. | DOI | MR