Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2010_9_3_1_a7, author = {Jabara, Enrico}, title = {Representations of {Numbers} as {Sums} and {Differences} of {Unlike} {Powers}}, journal = {Bollettino della Unione matematica italiana}, pages = {169--177}, publisher = {mathdoc}, volume = {Ser. 9, 3}, number = {1}, year = {2010}, zbl = {1198.11037}, mrnumber = {2605918}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a7/} }
TY - JOUR AU - Jabara, Enrico TI - Representations of Numbers as Sums and Differences of Unlike Powers JO - Bollettino della Unione matematica italiana PY - 2010 SP - 169 EP - 177 VL - 3 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a7/ LA - en ID - BUMI_2010_9_3_1_a7 ER -
Jabara, Enrico. Representations of Numbers as Sums and Differences of Unlike Powers. Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 1, pp. 169-177. http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a7/
[1] The representation of numbers as sums of unlike powers. II. J. Amer. Math. Soc., 9 , no. 4 (1996), 919-940. | DOI | MR | Zbl
,[2] The "easier" Waring problem. Q. J. Math., Oxf. Ser., 10 (1939), 190-209. | DOI | MR | Zbl
- ,[3] An introduction to the theory of numbers. Fifth edition. The Clarendon Press, Oxford University Press, New York, 1979. | MR
- ,[4] Sums of squares, cubes, and higher powers. Experiment. Math., 4 (1995), 169-173. | fulltext EuDML | MR | Zbl
- ,[5] The representation of almost all numbers as sums of unlike powers. J. Théor. Nombres Bordeaux 13 (2001), 227-240. | fulltext EuDML | MR | Zbl
- ,[6] Proof that almost all positive integers are sums of a square, a positive cube and a fourth power. J. London Math. Soc., 24 (1949), 4-13. | DOI | MR | Zbl
,[7] A problem in additive number theory. Proc. London Math. Soc., 53 , (1951), 381-395. | DOI | MR | Zbl
,[8] The Hardy-Littlewood method. Cambridge Tracts in Mathematics, 80. Cambridge University Press, Cambridge-New York, 1981. | MR | Zbl
,[9] An easier Waring problem. J. London Math. Soc., 9 (1934), 267-272. | DOI | MR | Zbl
,