Representations of Numbers as Sums and Differences of Unlike Powers
Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 1, pp. 169-177
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
In this paper we prove that every $n \in \mathbf{Z}$ can be written as $$n=\epsilon_{1}x^{2}_{1} + \epsilon_{2}x^{3}_{2} + \epsilon_{3}x^{4}_{3} + \epsilon_{4}x^{5}_{4}$$ and as $$n=\epsilon_{1}x^{3}_{1} + \epsilon_{2}x^{4}_{2} + \epsilon_{3}x^{5}_{3} + \epsilon_{4}x^{6}_{4} + \epsilon_{5}x^{7}_{5} + \epsilon_{6}x^{8}_{6} + \epsilon_{7}x^{9}_{7} + \epsilon_{8}x^{10}_{8}$$ with $x_{i} \in \mathbf{Z}$ and $\epsilon_{i} \in \{-1,1\}$. We also prove some other results on numbers expressible as sums or differences of unlike powers.
@article{BUMI_2010_9_3_1_a7,
author = {Jabara, Enrico},
title = {Representations of {Numbers} as {Sums} and {Differences} of {Unlike} {Powers}},
journal = {Bollettino della Unione matematica italiana},
pages = {169--177},
year = {2010},
volume = {Ser. 9, 3},
number = {1},
zbl = {1198.11037},
mrnumber = {2605918},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a7/}
}
Jabara, Enrico. Representations of Numbers as Sums and Differences of Unlike Powers. Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 1, pp. 169-177. http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a7/