Approximation of Anisotropic Perimeter Functionals by Homogenization
Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 1, pp. 149-168
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
We show that all anisotropic perimeter functionals of the form $\int_{\partial^{\star}E \cap \Omega} \varphi(\nu_{E}) \, d\mathcal{H}^{n-1}$ ($\varphi$ convex and positively homogeneous of degree one) can be approximated in the sense of $\Gamma$-convergence by (limits of) isotropic but inhomogeneous perimeter functionals of the form $\int_{\partial^{\star}E \cap \Omega} a(x/\epsilon) \, d\mathcal{H}^{n-1}$ ($a$ periodic).
@article{BUMI_2010_9_3_1_a6,
author = {Ansini, N. and Iosifescu, O.},
title = {Approximation of {Anisotropic} {Perimeter} {Functionals} by {Homogenization}},
journal = {Bollettino della Unione matematica italiana},
pages = {149--168},
publisher = {mathdoc},
volume = {Ser. 9, 3},
number = {1},
year = {2010},
zbl = {1196.49032},
mrnumber = {2605917},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a6/}
}
TY - JOUR AU - Ansini, N. AU - Iosifescu, O. TI - Approximation of Anisotropic Perimeter Functionals by Homogenization JO - Bollettino della Unione matematica italiana PY - 2010 SP - 149 EP - 168 VL - 3 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a6/ LA - en ID - BUMI_2010_9_3_1_a6 ER -
Ansini, N.; Iosifescu, O. Approximation of Anisotropic Perimeter Functionals by Homogenization. Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 1, pp. 149-168. http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a6/