Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2010_9_3_1_a6, author = {Ansini, N. and Iosifescu, O.}, title = {Approximation of {Anisotropic} {Perimeter} {Functionals} by {Homogenization}}, journal = {Bollettino della Unione matematica italiana}, pages = {149--168}, publisher = {mathdoc}, volume = {Ser. 9, 3}, number = {1}, year = {2010}, zbl = {1196.49032}, mrnumber = {2605917}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a6/} }
TY - JOUR AU - Ansini, N. AU - Iosifescu, O. TI - Approximation of Anisotropic Perimeter Functionals by Homogenization JO - Bollettino della Unione matematica italiana PY - 2010 SP - 149 EP - 168 VL - 3 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a6/ LA - en ID - BUMI_2010_9_3_1_a6 ER -
Ansini, N.; Iosifescu, O. Approximation of Anisotropic Perimeter Functionals by Homogenization. Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 1, pp. 149-168. http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a6/
[1] On the limits of periodic Riemannian metrics, J. Anal. Math., 43 (1984), 183-201. | DOI | MR | Zbl
- ,[2] Flat flow is motion by crystalline curvature for curves with crystalline energies, J. Differential Geom., 42 (1995), 1-22. | MR | Zbl
- ,[3] Functionals defined on partitions of sets of finite perimeter I: integral representation and $\Gamma$-convergence, J. Math. Pures Appl., 69 (1990), 285-305. | MR | Zbl
- ,[4] Functionals defined on partitions of sets of finite perimeter II: semicontinuity, relaxation and homogenization, J. Math. Pures Appl., 69 (1990), 307-333. | MR | Zbl
- ,[5] Functions of bounded variation and free discontinuity problems, Oxford University Press, 2000. | MR | Zbl
- - ,[6] Gradient theory of phase transitions in composite media, Proc. Royal Soc. Edinburgh A, 133 (2003), 265-296. | DOI | MR | Zbl
- - ,[7] Approximation to driven motion by crystalline curvature in two dimensions, Adv. Math. Sci. and Appl., 10 (2000), 467-493. | MR | Zbl
- - ,[8] Approximation and comparison for nonsmooth anisotropic motion by mean curvature in $\mathbb{R}^{n}$, Math. Mod. Meth. Appl. Sc., 10 (2000), 1-10. | DOI | MR | Zbl
- ,[9] A global method for relaxation in $W^{1,p}$ and in $SBV_{p}$, Arch. Rational Mech. Anal., 165, 3 (2002), 187-242. | DOI | MR
- - - ,[10] Approximation of Free-Discontinuity Problems, Lecture Notes in Mathematics (Springer Verlag, Berlin, 1998). | DOI | MR | Zbl
,[11] Riemannian approximation of Finsler metrics, Asymptot. Anal., 31 (2002), 117-187. | MR | Zbl
- - ,[12] Integral representation results for functionals defined on $SBV(\Omega,\mathbb{R}^{m})$, J. Math. Pures Appl., 75 (1996), 595-626. | MR | Zbl
- ,[13] Homogenization of Multiple Integrals, Oxford University Press, Oxford, 1998. | MR | Zbl
- ,[14] Homogenization by blow-up. Applicable Anal., 87 (2008), 1341-1356. | DOI | MR | Zbl
- - ,[15] An Introduction to $\Gamma$-convergence, Birkhäuser, Boston, 1993. | DOI | MR | Zbl
,[16] On the relaxation of a class of functionals defined on Riemannian distances, J. Convex Anal., 12 (2005), 113-130. | MR | Zbl
,[17] Smooth approximation of weak Finsler metrics, Differential Integral Equations, 18 (2005), 509-530. | MR | Zbl
,[18] Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Boston, 1984. | DOI | MR | Zbl
,[19] Geometric Measure Theory, Springer Verlag, Berlin, 1968. | MR | Zbl
,[20] Un esempio di $\Gamma$-convergenza, Boll. Un. Mat. Ital., 14-B (1977), 285-299. | MR
- ,[21] The gradient theory of phase transitions and the minimal interface criterion, Arch. Rational Mech. Anal., 98 (1987), 123-142. | DOI | MR | Zbl
,[22] Crystalline variational problems, Bull. Amer. Math. Soc., 84 (1978), 568-588. | DOI | MR | Zbl
,[23] Constructions and conjectures in crystalline nondifferential geometry, Differential Geometry, eds. B. Lawson and K. Tanenblat, Pitman Monographs in Pure and Applied Math., 52 (Pitman, 1991), 321-336. | DOI | MR | Zbl
,[24] Mean curvature and weighted mean curvature II, Acta Metall. Mater., 40 (1992) 1475-1485.
,[25] Motion of curves by crystalline curvature, including triple junctions and boundary points, Proc. Symp. Pure Math., 54 (1993) 417-438. | DOI | MR | Zbl
,