Approximation of Anisotropic Perimeter Functionals by Homogenization
Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 1, pp. 149-168

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We show that all anisotropic perimeter functionals of the form $\int_{\partial^{\star}E \cap \Omega} \varphi(\nu_{E}) \, d\mathcal{H}^{n-1}$ ($\varphi$ convex and positively homogeneous of degree one) can be approximated in the sense of $\Gamma$-convergence by (limits of) isotropic but inhomogeneous perimeter functionals of the form $\int_{\partial^{\star}E \cap \Omega} a(x/\epsilon) \, d\mathcal{H}^{n-1}$ ($a$ periodic).
@article{BUMI_2010_9_3_1_a6,
     author = {Ansini, N. and Iosifescu, O.},
     title = {Approximation of {Anisotropic} {Perimeter} {Functionals} by {Homogenization}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {149--168},
     publisher = {mathdoc},
     volume = {Ser. 9, 3},
     number = {1},
     year = {2010},
     zbl = {1196.49032},
     mrnumber = {2605917},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a6/}
}
TY  - JOUR
AU  - Ansini, N.
AU  - Iosifescu, O.
TI  - Approximation of Anisotropic Perimeter Functionals by Homogenization
JO  - Bollettino della Unione matematica italiana
PY  - 2010
SP  - 149
EP  - 168
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a6/
LA  - en
ID  - BUMI_2010_9_3_1_a6
ER  - 
%0 Journal Article
%A Ansini, N.
%A Iosifescu, O.
%T Approximation of Anisotropic Perimeter Functionals by Homogenization
%J Bollettino della Unione matematica italiana
%D 2010
%P 149-168
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a6/
%G en
%F BUMI_2010_9_3_1_a6
Ansini, N.; Iosifescu, O. Approximation of Anisotropic Perimeter Functionals by Homogenization. Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 1, pp. 149-168. http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a6/