Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2010_9_3_1_a4, author = {Kinnunen, J. and Kotilainen, M. and Latvala, V.}, title = {Hardy-Littlewood {Type} {Gradient} {Estimates} for {Quasiminimizers}}, journal = {Bollettino della Unione matematica italiana}, pages = {125--136}, publisher = {mathdoc}, volume = {Ser. 9, 3}, number = {1}, year = {2010}, zbl = {1205.35005}, mrnumber = {2605915}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a4/} }
TY - JOUR AU - Kinnunen, J. AU - Kotilainen, M. AU - Latvala, V. TI - Hardy-Littlewood Type Gradient Estimates for Quasiminimizers JO - Bollettino della Unione matematica italiana PY - 2010 SP - 125 EP - 136 VL - 3 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a4/ LA - en ID - BUMI_2010_9_3_1_a4 ER -
%0 Journal Article %A Kinnunen, J. %A Kotilainen, M. %A Latvala, V. %T Hardy-Littlewood Type Gradient Estimates for Quasiminimizers %J Bollettino della Unione matematica italiana %D 2010 %P 125-136 %V 3 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a4/ %G en %F BUMI_2010_9_3_1_a4
Kinnunen, J.; Kotilainen, M.; Latvala, V. Hardy-Littlewood Type Gradient Estimates for Quasiminimizers. Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 1, pp. 125-136. http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a4/
[1] Membership of Hankel Operators on the ball in unitary ideals, J. London Math. Soc., 43, no. 2 (1991), 485-508. | DOI | MR | Zbl
- - - ,[2] Sobolev-Poincaré inequalities for p<1, Indiana Univ. Math., 43, no. 1 (1994), 221-240. | DOI | MR | Zbl
- ,[3] $C^{1,\alpha}$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., 7 (1983), 827-850. | DOI | MR
,[4] Harnack inequality for quasi-minima of variational integrals, Annales de l'Institut H. Poincaré: Analyse Nonlinéaire, 1 (1984), 295-308. | fulltext EuDML | MR
- ,[5] A new proof of local $C^{1,\alpha}$ regularity for solutions of certain degenerate elliptic p.d.e., J. Differential Equations, 45 (1982), 356-373. | DOI | MR | Zbl
,[6] Hyperbolic harmonic functions: weak approach with applications in function spaces, Adv. Appl. Clifford Algebr., 17, no. 3 (2007), 425-436. | DOI | MR | Zbl
- - ,[7] The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl., 38 (1972), 746-765. | DOI | MR | Zbl
,[8] Regularity results for some classes of higher order nonlinear elliptic systems, J. Reine Angew. Math., 311/312 (1979), 145-169. | fulltext EuDML | MR | Zbl
- ,[9] Direct methods in the calculus of variations, World Scientific, 2003. | DOI | MR | Zbl
,[10] Harmonic functions on the real hyperbolic ball II. Hardy-Sobolev and Lipschitz spaces, Math. Nachr., 268 (2004), 50-73. | DOI | MR | Zbl
- ,[11] Nonlinear potential theory of degenerate elliptic equations, Oxford University Press, Oxford, 1993. | MR
- - ,[12] Inequalities, University Press, Cambridge, 1978. | MR
- - ,[13] Potential theory of quasiminimizers, Ann. Acad. Sci. Fenn. Math., 28 (2003), 459-490. | fulltext EuDML | MR | Zbl
- ,[14] BMO-invariance of quasiminimizers, Ann. Acad. Sci. Fenn. Math., 29, no. 2 (2004), 407-418. | fulltext EuDML | MR
,[15] Regularity of the derivatives of solutions to certain elliptic equations, Indiana Univ. Math. J., 32 (1983), 849-858. | DOI | MR | Zbl
,[16] Fine regularity of solutions of elliptic partial differential equations, American Mathematical Society, Providence, RI, 1997. | DOI | MR
- ,[17] Invariant potential theory in the unit ball of $C^{n}$. London Mathematical Society, Lecture Note Series 199. Cambridge University Press, Cambridge, 1994. | DOI | MR
,[18] Dirichlet and Bergman spaces of holomorphic functions in the unit ball of $C^{n}$, Monats. Math., 144 (2005), 131-139. | DOI | MR | Zbl
,[19] A Poincaré-type inequality for solutions of elliptic differential equations, Proc. Amer. Math. Soc., 97 (1986), 286-290. | DOI | MR | Zbl
,