Hardy-Littlewood Type Gradient Estimates for Quasiminimizers
Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 1, pp. 125-136.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We prove Hardy-Littlewood type integral estimates for quasiminimizers in the unit ball of the Euclidean n-space. These extend known results for planar analytic functions to a more general class of functions. Our results can be regarded as weighted Caccioppoli and Poincaré inequalities for quasiminimizers.
@article{BUMI_2010_9_3_1_a4,
     author = {Kinnunen, J. and Kotilainen, M. and Latvala, V.},
     title = {Hardy-Littlewood {Type} {Gradient} {Estimates} for {Quasiminimizers}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {125--136},
     publisher = {mathdoc},
     volume = {Ser. 9, 3},
     number = {1},
     year = {2010},
     zbl = {1205.35005},
     mrnumber = {2605915},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a4/}
}
TY  - JOUR
AU  - Kinnunen, J.
AU  - Kotilainen, M.
AU  - Latvala, V.
TI  - Hardy-Littlewood Type Gradient Estimates for Quasiminimizers
JO  - Bollettino della Unione matematica italiana
PY  - 2010
SP  - 125
EP  - 136
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a4/
LA  - en
ID  - BUMI_2010_9_3_1_a4
ER  - 
%0 Journal Article
%A Kinnunen, J.
%A Kotilainen, M.
%A Latvala, V.
%T Hardy-Littlewood Type Gradient Estimates for Quasiminimizers
%J Bollettino della Unione matematica italiana
%D 2010
%P 125-136
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a4/
%G en
%F BUMI_2010_9_3_1_a4
Kinnunen, J.; Kotilainen, M.; Latvala, V. Hardy-Littlewood Type Gradient Estimates for Quasiminimizers. Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 1, pp. 125-136. http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a4/

[1] J. Arazy - S. D. Fisher - S. Janson - J. Peetre, Membership of Hankel Operators on the ball in unitary ideals, J. London Math. Soc., 43, no. 2 (1991), 485-508. | DOI | MR | Zbl

[2] S. M. Buckley - P. Koskela, Sobolev-Poincaré inequalities for p<1, Indiana Univ. Math., 43, no. 1 (1994), 221-240. | DOI | MR | Zbl

[3] E. Di Benedetto, $C^{1,\alpha}$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., 7 (1983), 827-850. | DOI | MR

[4] E. Di Benedetto - N. S. Trudinger, Harnack inequality for quasi-minima of variational integrals, Annales de l'Institut H. Poincaré: Analyse Nonlinéaire, 1 (1984), 295-308. | fulltext EuDML | MR

[5] L. C. Evans, A new proof of local $C^{1,\alpha}$ regularity for solutions of certain degenerate elliptic p.d.e., J. Differential Equations, 45 (1982), 356-373. | DOI | MR | Zbl

[6] S-L. Eriksson - M. Kotilainen - V. Latvala, Hyperbolic harmonic functions: weak approach with applications in function spaces, Adv. Appl. Clifford Algebr., 17, no. 3 (2007), 425-436. | DOI | MR | Zbl

[7] T. M. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl., 38 (1972), 746-765. | DOI | MR | Zbl

[8] M. Giaquinta - G. Modica, Regularity results for some classes of higher order nonlinear elliptic systems, J. Reine Angew. Math., 311/312 (1979), 145-169. | fulltext EuDML | MR | Zbl

[9] E. Giusti, Direct methods in the calculus of variations, World Scientific, 2003. | DOI | MR | Zbl

[10] S. Grellier - P. Jaming, Harmonic functions on the real hyperbolic ball II. Hardy-Sobolev and Lipschitz spaces, Math. Nachr., 268 (2004), 50-73. | DOI | MR | Zbl

[11] J. Heinonen - T. Kilpeläinen - O. Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford University Press, Oxford, 1993. | MR

[12] G. H. Hardy - J. E. Littlewood - G. Pólya, Inequalities, University Press, Cambridge, 1978. | MR

[13] J. Kinnunen - O. Martio, Potential theory of quasiminimizers, Ann. Acad. Sci. Fenn. Math., 28 (2003), 459-490. | fulltext EuDML | MR | Zbl

[14] V. Latvala, BMO-invariance of quasiminimizers, Ann. Acad. Sci. Fenn. Math., 29, no. 2 (2004), 407-418. | fulltext EuDML | MR

[15] J. L. Lewis, Regularity of the derivatives of solutions to certain elliptic equations, Indiana Univ. Math. J., 32 (1983), 849-858. | DOI | MR | Zbl

[16] J. Malý - W. P. Ziemer, Fine regularity of solutions of elliptic partial differential equations, American Mathematical Society, Providence, RI, 1997. | DOI | MR

[17] M. Stoll, Invariant potential theory in the unit ball of $C^{n}$. London Mathematical Society, Lecture Note Series 199. Cambridge University Press, Cambridge, 1994. | DOI | MR

[18] M. Stoll, Dirichlet and Bergman spaces of holomorphic functions in the unit ball of $C^{n}$, Monats. Math., 144 (2005), 131-139. | DOI | MR | Zbl

[19] W. P. Ziemer, A Poincaré-type inequality for solutions of elliptic differential equations, Proc. Amer. Math. Soc., 97 (1986), 286-290. | DOI | MR | Zbl