Differential Equations and Para-CR Structures
Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 1, pp. 25-91

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We study the local geometry of n dimensional manifolds which are equipped with two integrable distributions, one of dimension $r$ and one of dimension $s$, where $r$ and $s$ are allowed to be unequal. We call them para-CR structures of type $(k,r,s)$, with $k = n - r - s \ge 0$ being the para-CR codimension. When $r = s$ they are the real analogues of CR structures. In the general case these structures are the natural geometric setting in which to discuss the geometry of systems of ODE's, as well as the geometry of systems of PDE's of finite type. For particular small values of $k,r,s$ we determine the basic local invariants of such structures.
@article{BUMI_2010_9_3_1_a1,
     author = {Hill, C. Denson and Nurowski, Pawe{\l}},
     title = {Differential {Equations} and {Para-CR} {Structures}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {25--91},
     publisher = {mathdoc},
     volume = {Ser. 9, 3},
     number = {1},
     year = {2010},
     zbl = {1206.58001},
     mrnumber = {2605912},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a1/}
}
TY  - JOUR
AU  - Hill, C. Denson
AU  - Nurowski, Paweł
TI  - Differential Equations and Para-CR Structures
JO  - Bollettino della Unione matematica italiana
PY  - 2010
SP  - 25
EP  - 91
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a1/
LA  - en
ID  - BUMI_2010_9_3_1_a1
ER  - 
%0 Journal Article
%A Hill, C. Denson
%A Nurowski, Paweł
%T Differential Equations and Para-CR Structures
%J Bollettino della Unione matematica italiana
%D 2010
%P 25-91
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a1/
%G en
%F BUMI_2010_9_3_1_a1
Hill, C. Denson; Nurowski, Paweł. Differential Equations and Para-CR Structures. Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 1, pp. 25-91. http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a1/