Differential Equations and Para-CR Structures
Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 1, pp. 25-91.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We study the local geometry of n dimensional manifolds which are equipped with two integrable distributions, one of dimension $r$ and one of dimension $s$, where $r$ and $s$ are allowed to be unequal. We call them para-CR structures of type $(k,r,s)$, with $k = n - r - s \ge 0$ being the para-CR codimension. When $r = s$ they are the real analogues of CR structures. In the general case these structures are the natural geometric setting in which to discuss the geometry of systems of ODE's, as well as the geometry of systems of PDE's of finite type. For particular small values of $k,r,s$ we determine the basic local invariants of such structures.
@article{BUMI_2010_9_3_1_a1,
     author = {Hill, C. Denson and Nurowski, Pawe{\l}},
     title = {Differential {Equations} and {Para-CR} {Structures}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {25--91},
     publisher = {mathdoc},
     volume = {Ser. 9, 3},
     number = {1},
     year = {2010},
     zbl = {1206.58001},
     mrnumber = {2605912},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a1/}
}
TY  - JOUR
AU  - Hill, C. Denson
AU  - Nurowski, Paweł
TI  - Differential Equations and Para-CR Structures
JO  - Bollettino della Unione matematica italiana
PY  - 2010
SP  - 25
EP  - 91
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a1/
LA  - en
ID  - BUMI_2010_9_3_1_a1
ER  - 
%0 Journal Article
%A Hill, C. Denson
%A Nurowski, Paweł
%T Differential Equations and Para-CR Structures
%J Bollettino della Unione matematica italiana
%D 2010
%P 25-91
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a1/
%G en
%F BUMI_2010_9_3_1_a1
Hill, C. Denson; Nurowski, Paweł. Differential Equations and Para-CR Structures. Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 1, pp. 25-91. http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a1/

[1] D. V. Alekseevsky - C. Medori - A. Tomassini, Maximally homogeneous para-CR manifolds of semisimple type, to appear in Handbook of Pseudo-Riemannian geometry and Supersymmetry (2008), arXiv:0808.0431 | DOI | MR

[2] E. Cartan, Les systemes de Pfaff a cinq variables et les equations aux derivees partielles du seconde ordre, Ann. Sc. Norm. Sup., 27 (1910), 109-192. | fulltext EuDML | MR | Zbl

[3] E. Cartan, Varietés à connexion projective, Bull. Soc. Math., LII (1924), 205-241. | fulltext EuDML | MR | Zbl

[4] S. S. Chern, The geometry of the differential equations $y^{\prime\prime\prime} = F(x,y,y^{\prime}y^{\prime\prime})$, Sci. Rep. Nat. Tsing Hua Univ., 4 (1940), 97-111. | MR

[5] C. Fefferman - C. R. Graham, Conformal invariants, in Elie Cartan et mathematiques d'aujourd'hui, Asterisque, hors serie (Societe Mathematique de France, Paris) (1985), 95-116. | MR

[6] S. Fritelli - C. N. Kozameh - E. T. Newman, GR via characteristic surfaces, J. Math. Phys., 36 (1995), 4984-. | DOI | MR | Zbl

[7] S. Fritelli - E. T. Newman - P. Nurowski, Conformal Lorentzian metrics on the spaces of curves and 2-surfaces, Class. Q. Grav., 20 (2003), 3649-3659. | DOI | MR | Zbl

[8] M. Godlinski, Geometry of Third-Order Ordinary Differential Equations and Its Applications in General Relativity, PhD Thesis, Warsaw University (2008), arXiv: 0810.2234.

[9] M. Godlinski - P. Nurowski, Geometry of third-order ODEs (2009), arXiv: 0902.4129. | DOI | MR

[10] A. R. Gover - P. Nurowski, Obstructions to conformally Einstein metrics in n dimensions, Journ. Geom. Phys., 56 (2006), 450-484. | DOI | MR | Zbl

[11] S. Lie, Klassifikation und Integration von gewohnlichen Differentialgleichungen zwischen x, y, die eine Gruppe von Transformationen gestatten III, in Gesammelte Abhandlungen, Vol. 5 (Teubner, Leipzig, 1924). | Zbl

[12] Th. Leistner - P. Nurowski, Ambient metrics for n-dimensional pp-waves (2008), arXiv:0810.2903. | DOI | MR | Zbl

[13] J. Lewandowski, Reduced holonomy group and Einstein equations with a cosmological constant, Class. Q. Grav., 9 (1992), L147-L151. | MR | Zbl

[14] P. Nurowski, Differential equations and conformal structures, Journ. Geom. Phys., 55 (2005), 19-49. | DOI | MR | Zbl

[15] P. Nurowski - D. C. Robinson, Intrinsic geometry of a null hypersurface, Class. Q. Grav., 17 (2000), 4065-4084. | DOI | MR | Zbl

[16] P. Nurowski - G. A. J. Sparling, Three dimensional Cauchy-Riemann structures and second order ordinary differential equations, Class. Q. Grav., 20 (2003), 4995-5016. | DOI | MR | Zbl

[17] P. J. Olver, Equivalence Invariants and Symmetry, Cambridge University Press (Cambridge, 1996). | DOI | MR | Zbl

[18] K. Perkins, The Cartan-Weyl conformal geometry of a pair of second-order partial-differential equations, PhD Thesis, Department of Physics & Astronomy (University of Pittsburgh, 2006).

[19] N. Tanaka, On affine symmetric spaces and the automorphism groups of product manifolds, Hokkaido Math. J., 14 (1985), 277-351. | DOI | MR | Zbl

[20] M. A. Tresse, Determinations des invariants ponctuels de l'equation differentielle ordinaire du second ordre $y^{\prime\prime} = \omega(x,y,y^{\prime})$, Hirzel (Leipzig, 1896). | Zbl

[21] K. Wuè Nschmann, Über Beruhrungsbedingungen bei Differentialgleichungen, Dissertation (Greifswald, 1905).