Sufficient Conditions for Integrability of Distortion Function Kf 1
Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 3, pp. 699-710.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Assume that $\Omega$, $\Omega'$ are planar domains and $f \colon \Omega \xrightarrow{\text{onto}} \Omega'$ is a homeomorphism belonging to Sobolev space $W_{\text{loc}}^{1,1}(\Omega; \mathbb{R}^{2})$ with finite distortion. We prove that if the distortion function $K_{f}$ of $f$ satisfies the condition $\operatorname{dist}_{\text{EXP}} (K_{f}, L^{\infty}) 1$, then the distortion function $K_{f^{-1}}$ of $f^{-1}$ belongs to $L^{1}_{\text{loc}}(\Omega')$. We show that this result is sharp in sense that the conclusion fails if $\operatorname{dist}_{\text{EXP}} (K_{f}, L^{\infty}) = 1$. Moreover, we prove that if the distortion function $K_{f}$ satisfies the condition $\operatorname{dist}_{\text{EXP}} (K_{f}, L^{\infty}) = \lambda$ for some $\lambda > 0$, then $K_{f^{-1}}$ belongs to $L^{p}_{\text{loc}}(\Omega')$ for every $p \in (0, \frac{1}{2\lambda})$. As special case of this result we show that if the distortion function $K_{f}$ satisfies the condition $\operatorname{dist}_{\text{EXP}} (K_{f}, L^{\infty}) = 0$, then $K_{f^{-1}}$ belongs to intersection of $L^{p}_{\text{loc}}(\Omega')$ for all $p > 1$.
@article{BUMI_2009_9_2_3_a9,
     author = {Capozzoli, Costantino},
     title = {Sufficient {Conditions} for {Integrability} of {Distortion} {Function} {Kf} 1},
     journal = {Bollettino della Unione matematica italiana},
     pages = {699--710},
     publisher = {mathdoc},
     volume = {Ser. 9, 2},
     number = {3},
     year = {2009},
     zbl = {1191.46027},
     mrnumber = {2569298},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_3_a9/}
}
TY  - JOUR
AU  - Capozzoli, Costantino
TI  - Sufficient Conditions for Integrability of Distortion Function Kf 1
JO  - Bollettino della Unione matematica italiana
PY  - 2009
SP  - 699
EP  - 710
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_3_a9/
LA  - en
ID  - BUMI_2009_9_2_3_a9
ER  - 
%0 Journal Article
%A Capozzoli, Costantino
%T Sufficient Conditions for Integrability of Distortion Function Kf 1
%J Bollettino della Unione matematica italiana
%D 2009
%P 699-710
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_3_a9/
%G en
%F BUMI_2009_9_2_3_a9
Capozzoli, Costantino. Sufficient Conditions for Integrability of Distortion Function Kf 1. Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 3, pp. 699-710. http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_3_a9/

[1] K. Astala - J. Gill - S. Rohde - E. Saksman, Optimal regularity for planar mappings of finite distortion, Ann. Inst. H. Poincaré Anal. Non Linéaire, (to appear). | DOI | MR | Zbl

[2] K. Astala - T. Iwaniec - G. Martin, Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane, Princeton Mat. Ser., 48 (2009). | MR | Zbl

[3] M. Carozza - C. Sbordone, The distance to $L^\infty$ in some function spaces and applications, Differential Integral Equations, 10 (4) (1997), 599-607. | MR | Zbl

[4] D. Faraco - P. Koskela - X. Zhong, Mappings of finite distortion: the degree of regularity, Adv. Math., 190 (2005), 300-318. | DOI | MR | Zbl

[5] H. Federer, Geometric measure theory, Grundlehren Math. Wiss., Band 153, Springer-Verlag, New York, 1969 (second edition 1996) | MR | Zbl

[6] N. Fusco - P. L. Lions - C. Sbordone, Sobolev imbedding theorems in borderline cases, Proc. Amer. Math. Soc., 124 (2) (1996), 561-565. | DOI | MR | Zbl

[7] F. W. Gehring - O. Lehto, On the total differentiability of functions of complex variable, Ann. Acad. Sci. Fenn. Math. Ser. A I, 272 (1959), 1-9. | MR | Zbl

[8] L. Greco - C. Sbordone - C. Trombetti, A note on $W_{\text{loc}}^{1,1}$ planar homeomorphisms, Rend. Accad. Sc. Fis. Mat. Napoli, LXXIII (2006), 419-421. | MR

[9] S. Hencl - P. Koskela, Regularity of the Inverse of a Planar Sobolev Homeomorphism, Arch. Ration. Mech. Anal., 180 (2006), 75-95. | DOI | MR | Zbl

[10] S. Hencl - P. Koskela - J. Malý, Regularity of the inverse of a Sobolev homeomorphism in space, Proc. Roy. Soc. Edinburgh Sect. A, 136 (6) (2006), 1267-1285. | DOI | MR | Zbl

[11] S. Hencl - P. Koskela - J. Onninen, A note on extremal mappings of finite distortion, Math. Res. Lett., 12 (2005), 231-238. | DOI | MR | Zbl

[12] S. Hencl - P. Koskela - J. Onninen, Homeomorphisms of Bounded Variation, Arch. Rational Mech. Anal., 186 (2007), 351-360. | DOI | MR | Zbl

[13] S. Hencl - G. Moscariello - A. Passarelli Di Napoli - C. Sbordone, Bi-Sobolev mappings and elliptic equations in the plane, J. Math. Anal. Appl., 355 (2009), 22-32. | DOI | MR | Zbl

[14] T. Iwaniec - G. Martin, Geometric Function Theory and Non-linear Analysis, Oxford Math. Monogr., Oxford Univ. Press (2001). | MR

[15] O. Lehto - K. Virtanen, Quasiconformal Mappings in the Plane (Springer-Verlag, Berlin, 1971). | MR | Zbl

[16] G. Moscariello - A. Passarelli Di Napoli - C. Sbordone, ACL-homeomorphisms in the plane, Oper. Theory Adv. Appl., 193 (2009), 215-225. | DOI | MR | Zbl

[17] S. Rickman, Quasiregular mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete, 26 (3) (Springer-Verlag, Berlin, 1993). | DOI | MR