Sufficient Conditions for Integrability of Distortion Function Kf 1
Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 3, pp. 699-710
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
Assume that $\Omega$, $\Omega'$ are planar domains and $f \colon \Omega \xrightarrow{\text{onto}} \Omega'$ is a homeomorphism belonging to Sobolev space $W_{\text{loc}}^{1,1}(\Omega; \mathbb{R}^{2})$ with finite distortion. We prove that if the distortion function $K_{f}$ of $f$ satisfies the condition $\operatorname{dist}_{\text{EXP}} (K_{f}, L^{\infty}) 1$, then the distortion function $K_{f^{-1}}$ of $f^{-1}$ belongs to $L^{1}_{\text{loc}}(\Omega')$. We show that this result is sharp in sense that the conclusion fails if $\operatorname{dist}_{\text{EXP}} (K_{f}, L^{\infty}) = 1$. Moreover, we prove that if the distortion function $K_{f}$ satisfies the condition $\operatorname{dist}_{\text{EXP}} (K_{f}, L^{\infty}) = \lambda$ for some $\lambda > 0$, then $K_{f^{-1}}$ belongs to $L^{p}_{\text{loc}}(\Omega')$ for every $p \in (0, \frac{1}{2\lambda})$. As special case of this result we show that if the distortion function $K_{f}$ satisfies the condition $\operatorname{dist}_{\text{EXP}} (K_{f}, L^{\infty}) = 0$, then $K_{f^{-1}}$ belongs to intersection of $L^{p}_{\text{loc}}(\Omega')$ for all $p > 1$.
@article{BUMI_2009_9_2_3_a9,
author = {Capozzoli, Costantino},
title = {Sufficient {Conditions} for {Integrability} of {Distortion} {Function} {Kf} 1},
journal = {Bollettino della Unione matematica italiana},
pages = {699--710},
year = {2009},
volume = {Ser. 9, 2},
number = {3},
zbl = {1191.46027},
mrnumber = {2569298},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_3_a9/}
}
Capozzoli, Costantino. Sufficient Conditions for Integrability of Distortion Function Kf 1. Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 3, pp. 699-710. http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_3_a9/