Isomorphisms of Royden Type Algebras Over $\mathbb{S}^1$
Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 3, pp. 719-729.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Let $\mathbb{S}^{1}$ and $\mathbb{D}$ be the unit circle and the unit disc in the plane and let us denote by $\mathcal{A}(\mathbb{S}^{1})$ the algebra of the complex-valued continuous functions on $\mathbb{S}^{1}$ which are traces of functions in the Sobolev class $W^{1,2}(\mathbb{D})$. On $\mathcal{A}(\mathbb{S}^{1})$ we define the following norm \begin{equation*} \|u\| = \|u\|_{L^{\infty}(\mathbb{S}^{1})} + \left(\iint _{\mathbb{D}} |\nabla \tilde{u}|^{2} \right)^{1/2} \end{equation*} where is the harmonic extension of $u$ to $\mathbb{D}$. We prove that every isomorphism of the functional algebra $\mathcal{A}(\mathbb{S}^{1})$ is a quasitsymmetric change of variables on $\mathbb{S}^{1}$.
@article{BUMI_2009_9_2_3_a11,
     author = {Radice, Teresa and Saksman, Eero and Zecca, Gabriella},
     title = {Isomorphisms of {Royden} {Type} {Algebras} {Over} $\mathbb{S}^1$},
     journal = {Bollettino della Unione matematica italiana},
     pages = {719--729},
     publisher = {mathdoc},
     volume = {Ser. 9, 2},
     number = {3},
     year = {2009},
     zbl = {1191.30009},
     mrnumber = {2569300},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_3_a11/}
}
TY  - JOUR
AU  - Radice, Teresa
AU  - Saksman, Eero
AU  - Zecca, Gabriella
TI  - Isomorphisms of Royden Type Algebras Over $\mathbb{S}^1$
JO  - Bollettino della Unione matematica italiana
PY  - 2009
SP  - 719
EP  - 729
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_3_a11/
LA  - en
ID  - BUMI_2009_9_2_3_a11
ER  - 
%0 Journal Article
%A Radice, Teresa
%A Saksman, Eero
%A Zecca, Gabriella
%T Isomorphisms of Royden Type Algebras Over $\mathbb{S}^1$
%J Bollettino della Unione matematica italiana
%D 2009
%P 719-729
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_3_a11/
%G en
%F BUMI_2009_9_2_3_a11
Radice, Teresa; Saksman, Eero; Zecca, Gabriella. Isomorphisms of Royden Type Algebras Over $\mathbb{S}^1$. Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 3, pp. 719-729. http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_3_a11/

[1] K. Astala, A remark on quasiconformal mappings and BMO-functions, Michigan Math. J., 30 (1983), 209-212. | DOI | MR | Zbl

[2] K. Astala - T. Iwaniec - G. Martin, Elliptic partial differential equations and quasiconformal mappings in the plane. Princeton Mathematical Series, 48. Princeton University Press 2009. | MR | Zbl

[3] A. Beurling - L. Ahlfors, The boundary correspondence under quasi-conformal mappings, Acta Math., 96 (1956), 125-142. | DOI | MR | Zbl

[4] J. Douglas, Solution of the problem of Plateau, Trans. Amer. Math. Soc., 33 (1931), 231-321. | DOI | MR | Zbl

[5] P. W. Jones, Homeomorphisms of the line which preserve BMO, Ark. Mat., 21 (1983), 229-231. | DOI | MR | Zbl

[6] Y. Katznelson, An introduction to harmonic analysis (Dover, 1976). | MR | Zbl

[7] L. G. Lewis, Quasiconformal mappings and Royden algebras in space, Trans. Amer. Math. Soc., 158 (1971), 481-492. | DOI | MR | Zbl

[8] M. Nakai, Algebraic criterion on quasiconformal equivalence of Riemann surfaces, Nagoya Math. J., 16 (1960), 157-184. | MR | Zbl

[9] H. M. Reimann, Functions of Bounded mean Oscillation and Quasiconformal Mappings, Comment. Math. Helv., 49 (1974), 260-276. | fulltext EuDML | DOI | MR | Zbl

[10] S. G. Staples, Maximal functions, $A_\infty$-measures and quasiconformal maps, Proc. Amer. Math. Soc., 113 (1991), 689-700. | DOI | MR | Zbl