A Montel Type Result for Subharmonic Functions
Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 2, pp. 423-444.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

This article is devoted to sequences $(u_{n})_{n}$ of subharmonic functions in $\mathbb{R}^{N}$, with finite order, whose means $J_{u_{n}}(r)$ (over spheres centered at the origin, with radius r) satisfy such a condition as: $\forall r > 0$, $\exists A_{r} > 0$ such that $J_{u_{n}}(r) \le A_{r}$, $\forall n \in \mathbf{N}$. The paper investigates under which conditions one may extract a pointwise or uniformly convergent subsequence.
@article{BUMI_2009_9_2_2_a7,
     author = {Supper, R.},
     title = {A {Montel} {Type} {Result} for {Subharmonic} {Functions}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {423--444},
     publisher = {mathdoc},
     volume = {Ser. 9, 2},
     number = {2},
     year = {2009},
     zbl = {1178.31001},
     mrnumber = {2537279},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_2_a7/}
}
TY  - JOUR
AU  - Supper, R.
TI  - A Montel Type Result for Subharmonic Functions
JO  - Bollettino della Unione matematica italiana
PY  - 2009
SP  - 423
EP  - 444
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_2_a7/
LA  - en
ID  - BUMI_2009_9_2_2_a7
ER  - 
%0 Journal Article
%A Supper, R.
%T A Montel Type Result for Subharmonic Functions
%J Bollettino della Unione matematica italiana
%D 2009
%P 423-444
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_2_a7/
%G en
%F BUMI_2009_9_2_2_a7
Supper, R. A Montel Type Result for Subharmonic Functions. Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 2, pp. 423-444. http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_2_a7/

[1] J. M. Anderson - A. Baernstein, The size of the set on which a meromorphic function is large, Proc. London Math. Soc., 36 (3) (1978), 518-539. | DOI | MR | Zbl

[2] O. Frostman, Potentiel d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions, Meddelanden Mat. Sem. Univ. Lund, 3 (1935), 1-118. | Zbl

[3] W. K. Hayman - P. B. Kennedy, Subharmonic functions, Vol.I, London Mathematical Society Monographs, Academic Press, London-New York, 9 (1976). | MR | Zbl

[4] L. L. Helms, Introduction to potential theory, Pure and Applied Mathematics, Wiley-Interscience, New York-London-Sydney, XXII (1969). | MR | Zbl

[5] A. A. Kondratyuk - S. I. Tarasyuk, Compact operators and normal families of subharmonic functions, Function spaces, differential operators and nonlinear analysis (Paseky nad Jizerou, 1995), Prometheus, Prague (1996), 227-231. | MR | Zbl

[6] N. S. Landkof, Foundations of modern potential theory, Die Grundlehren der mathematischen Wissenschaften, Berlin-Heidelberg-New York, Springer-Verlag, 180 (1972). | MR

[7] F. Riesz, Sur les fonctions subharmoniques et leur rapport à la théorie du potentiel II, Acta Math., 54 (1930), 321-360. | DOI | MR | Zbl

[8] L. I. Ronkin, Functions of completely regular growth, Mathematics and its Applications (Soviet Series), Kluwer Academic Publishers' Group, Dordrecht, 81 (1992). | DOI | MR

[9] R. Supper, Subharmonic functions and their Riesz measure, Journal of Inequalities in Pure and Applied Mathematics, 2, no. 2 (2001), Paper No. 16, 14 p. http://jipam.vu.edu.au. | fulltext EuDML | MR | Zbl

[10] R. Supper, Subharmonic functions of order less than one, Potential Analysis, Springer, 23, no. 2 (2005), 165-179. | DOI | MR | Zbl

[11] A. Yger, Analyse complexe et distributions; éditeur: Ellipses (2001).