Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2009_9_2_2_a7, author = {Supper, R.}, title = {A {Montel} {Type} {Result} for {Subharmonic} {Functions}}, journal = {Bollettino della Unione matematica italiana}, pages = {423--444}, publisher = {mathdoc}, volume = {Ser. 9, 2}, number = {2}, year = {2009}, zbl = {1178.31001}, mrnumber = {2537279}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_2_a7/} }
Supper, R. A Montel Type Result for Subharmonic Functions. Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 2, pp. 423-444. http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_2_a7/
[1] The size of the set on which a meromorphic function is large, Proc. London Math. Soc., 36 (3) (1978), 518-539. | DOI | MR | Zbl
- ,[2] Potentiel d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions, Meddelanden Mat. Sem. Univ. Lund, 3 (1935), 1-118. | Zbl
,[3] Subharmonic functions, Vol.I, London Mathematical Society Monographs, Academic Press, London-New York, 9 (1976). | MR | Zbl
- ,[4] Introduction to potential theory, Pure and Applied Mathematics, Wiley-Interscience, New York-London-Sydney, XXII (1969). | MR | Zbl
,[5] Compact operators and normal families of subharmonic functions, Function spaces, differential operators and nonlinear analysis (Paseky nad Jizerou, 1995), Prometheus, Prague (1996), 227-231. | MR | Zbl
- ,[6] Foundations of modern potential theory, Die Grundlehren der mathematischen Wissenschaften, Berlin-Heidelberg-New York, Springer-Verlag, 180 (1972). | MR
,[7] Sur les fonctions subharmoniques et leur rapport à la théorie du potentiel II, Acta Math., 54 (1930), 321-360. | DOI | MR | Zbl
,[8] Functions of completely regular growth, Mathematics and its Applications (Soviet Series), Kluwer Academic Publishers' Group, Dordrecht, 81 (1992). | DOI | MR
,[9] Subharmonic functions and their Riesz measure, Journal of Inequalities in Pure and Applied Mathematics, 2, no. 2 (2001), Paper No. 16, 14 p. http://jipam.vu.edu.au. | fulltext EuDML | MR | Zbl
,[10] Subharmonic functions of order less than one, Potential Analysis, Springer, 23, no. 2 (2005), 165-179. | DOI | MR | Zbl
,[11] Analyse complexe et distributions; éditeur: Ellipses (2001).
,