A Global Uniqueness Result for an Evolution Problem Arising in Superconductivity
Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 2, pp. 509-528
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
We consider an energy functional on measures in $\mathbb{R}^{2}$ arising in superconductivity as a limit case of the well-known Ginzburg Landau functionals. We study its gradient flow with respect to the Wasserstein metric of probability measures, whose corresponding time evolutive problem can be seen as a mean field model for the evolution of vortex densities. Improving the analysis made in [AS], we obtain a new existence and uniqueness result for the evolution problem.
@article{BUMI_2009_9_2_2_a13,
author = {Mainini, Edoardo},
title = {A {Global} {Uniqueness} {Result} for an {Evolution} {Problem} {Arising} in {Superconductivity}},
journal = {Bollettino della Unione matematica italiana},
pages = {509--528},
year = {2009},
volume = {Ser. 9, 2},
number = {2},
zbl = {1175.82080},
mrnumber = {2537285},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_2_a13/}
}
TY - JOUR AU - Mainini, Edoardo TI - A Global Uniqueness Result for an Evolution Problem Arising in Superconductivity JO - Bollettino della Unione matematica italiana PY - 2009 SP - 509 EP - 528 VL - 2 IS - 2 UR - http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_2_a13/ LA - en ID - BUMI_2009_9_2_2_a13 ER -
Mainini, Edoardo. A Global Uniqueness Result for an Evolution Problem Arising in Superconductivity. Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 2, pp. 509-528. http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_2_a13/