A Global Uniqueness Result for an Evolution Problem Arising in Superconductivity
Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 2, pp. 509-528.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We consider an energy functional on measures in $\mathbb{R}^{2}$ arising in superconductivity as a limit case of the well-known Ginzburg Landau functionals. We study its gradient flow with respect to the Wasserstein metric of probability measures, whose corresponding time evolutive problem can be seen as a mean field model for the evolution of vortex densities. Improving the analysis made in [AS], we obtain a new existence and uniqueness result for the evolution problem.
@article{BUMI_2009_9_2_2_a13,
     author = {Mainini, Edoardo},
     title = {A {Global} {Uniqueness} {Result} for an {Evolution} {Problem} {Arising} in {Superconductivity}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {509--528},
     publisher = {mathdoc},
     volume = {Ser. 9, 2},
     number = {2},
     year = {2009},
     zbl = {1175.82080},
     mrnumber = {2537285},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_2_a13/}
}
TY  - JOUR
AU  - Mainini, Edoardo
TI  - A Global Uniqueness Result for an Evolution Problem Arising in Superconductivity
JO  - Bollettino della Unione matematica italiana
PY  - 2009
SP  - 509
EP  - 528
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_2_a13/
LA  - en
ID  - BUMI_2009_9_2_2_a13
ER  - 
%0 Journal Article
%A Mainini, Edoardo
%T A Global Uniqueness Result for an Evolution Problem Arising in Superconductivity
%J Bollettino della Unione matematica italiana
%D 2009
%P 509-528
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_2_a13/
%G en
%F BUMI_2009_9_2_2_a13
Mainini, Edoardo. A Global Uniqueness Result for an Evolution Problem Arising in Superconductivity. Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 2, pp. 509-528. http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_2_a13/

[AG] L. Ambrosio - W. Gangbo, Hamiltonian ODE's in the Wasserstein space of probability measures, Comm. Pure Appl. Math., LXI, no. 1 (2008), 18-53. | DOI | MR | Zbl

[AS] L. Ambrosio - S. Serfaty, A gradient flow approach to an evolution problem arising in superconductivity, Comm. Pure Appl. Math., LXI, no. 11 (2008), 1495-1539. | DOI | MR | Zbl

[AGS] L. Ambrosio - N. Gigli - G. Savaré, Gradient flows in metric spaces and in the spaces of probability measures, Lectures in Mathematics ETH Zu Èrich, Birkhäuser Verlag, Basel (2005). | MR

[CRS] J. S. Chapman - J. Rubinstein - M. Schatzman, A mean-field model for superconducting vortices, Eur. J. Appl. Math., 7, no. 2 (1996), 97-111. | DOI | MR | Zbl

[JKO] R. Jordan - D. Kinderlehrer - F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), 1-17. | DOI | MR | Zbl

[O1] F. Otto, The geometry of dissipative evolution equations: the porous-medium equation, Comm. PDE, 26 (2001), 101-174. | DOI | MR | Zbl

[SS1] E. Sandier - S. Serfaty, A Rigorous Derivation of a Free-Boundary Problem Arising in Superconductivity, Ann. Scien. Ecole Normale Supérieure, 4e ser 33 (2000), 561-592. | fulltext EuDML | DOI | MR | Zbl

[SS2] E. Sandier - S. Serfaty, Limiting Vorticities for the Ginzburg-Landau equations, Duke Math. J., 117 (2003), 403-446. | DOI | MR | Zbl

[VI] C. Villani, Topics in optimal transportation, Graduate Studies in Mathematics 58, American Mathematical Society, Providence, RI, (2003). | DOI | MR | Zbl

[YU1] V. Yudovich, Nonstationary flow of an ideal incompressible liquid, Zhurn. Vych. Mat., 3 (1963), 1032-1066. | MR

[YU2] V. Yudovich, Some bounds for solutions of elliptic equations, Mat. Sb., 59 (1962), 229-244; English transl. in Amer. Mat. Soc. Transl. (2), 56 (1962). | MR