Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2009_9_2_2_a13, author = {Mainini, Edoardo}, title = {A {Global} {Uniqueness} {Result} for an {Evolution} {Problem} {Arising} in {Superconductivity}}, journal = {Bollettino della Unione matematica italiana}, pages = {509--528}, publisher = {mathdoc}, volume = {Ser. 9, 2}, number = {2}, year = {2009}, zbl = {1175.82080}, mrnumber = {2537285}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_2_a13/} }
TY - JOUR AU - Mainini, Edoardo TI - A Global Uniqueness Result for an Evolution Problem Arising in Superconductivity JO - Bollettino della Unione matematica italiana PY - 2009 SP - 509 EP - 528 VL - 2 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_2_a13/ LA - en ID - BUMI_2009_9_2_2_a13 ER -
Mainini, Edoardo. A Global Uniqueness Result for an Evolution Problem Arising in Superconductivity. Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 2, pp. 509-528. http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_2_a13/
[AG] Hamiltonian ODE's in the Wasserstein space of probability measures, Comm. Pure Appl. Math., LXI, no. 1 (2008), 18-53. | DOI | MR | Zbl
- ,[AS] A gradient flow approach to an evolution problem arising in superconductivity, Comm. Pure Appl. Math., LXI, no. 11 (2008), 1495-1539. | DOI | MR | Zbl
- ,[AGS] Gradient flows in metric spaces and in the spaces of probability measures, Lectures in Mathematics ETH Zu Èrich, Birkhäuser Verlag, Basel (2005). | MR
- - ,[CRS] A mean-field model for superconducting vortices, Eur. J. Appl. Math., 7, no. 2 (1996), 97-111. | DOI | MR | Zbl
- - ,[JKO] The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), 1-17. | DOI | MR | Zbl
- - ,[O1] The geometry of dissipative evolution equations: the porous-medium equation, Comm. PDE, 26 (2001), 101-174. | DOI | MR | Zbl
,[SS1] A Rigorous Derivation of a Free-Boundary Problem Arising in Superconductivity, Ann. Scien. Ecole Normale Supérieure, 4e ser 33 (2000), 561-592. | fulltext EuDML | DOI | MR | Zbl
- ,[SS2] Limiting Vorticities for the Ginzburg-Landau equations, Duke Math. J., 117 (2003), 403-446. | DOI | MR | Zbl
- ,[VI] Topics in optimal transportation, Graduate Studies in Mathematics 58, American Mathematical Society, Providence, RI, (2003). | DOI | MR | Zbl
,[YU1] Nonstationary flow of an ideal incompressible liquid, Zhurn. Vych. Mat., 3 (1963), 1032-1066. | MR
,[YU2] Some bounds for solutions of elliptic equations, Mat. Sb., 59 (1962), 229-244; English transl. in Amer. Mat. Soc. Transl. (2), 56 (1962). | MR
,