Convergence to Equilibrium of the Solution of Kac's Kinetic Equation. A Probabilistic View
Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 1, pp. 175-198
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
Let $f(\cdot, t)$ be the probability density function representing the solution of Kac's Boltzmann-like equation at time $t$, with initial data $f_{0}$, and let $g_{\sigma}$ be the Gaussian density with zero mean and variance $\sigma^{2}$, $\sigma^{2}$ being the value of the second moment of $f_{0}$. Henry McKean Jr. put forward the conjecture that the total variation distance between $f(\cdot,t)$ and $g_{\sigma}$ goes to zero, as $t \to + \infty$, with an exponential rate equal to $-1/4$. This lecture aims at explaining the main efforts made to a view to validating this conjecture, and concludes with the theorem stating that this holds true whenever $f_{0}$ has finite fourth moment and its Fourier transform $\varphi_{0}$ satisfies $|\varphi_{0}(\xi)| = o(|\xi|^{-p})$ as $|\xi| \to + \infty$, for some $p > 0$. The first part of the lecture expounds the derivation of the Kac Boltzmann-like equation from the Kac master equation. A detailed description of the probabilistic methods resorted to prove the above-mentioned theorem is then given. The final part mentions further applications of these methods to other kinetic models.
@article{BUMI_2009_9_2_1_a8,
author = {Regazzini, Eugenio},
title = {Convergence to {Equilibrium} of the {Solution} of {Kac's} {Kinetic} {Equation.} {A} {Probabilistic} {View}},
journal = {Bollettino della Unione matematica italiana},
pages = {175--198},
publisher = {mathdoc},
volume = {Ser. 9, 2},
number = {1},
year = {2009},
zbl = {1177.82093},
mrnumber = {2493650},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a8/}
}
TY - JOUR AU - Regazzini, Eugenio TI - Convergence to Equilibrium of the Solution of Kac's Kinetic Equation. A Probabilistic View JO - Bollettino della Unione matematica italiana PY - 2009 SP - 175 EP - 198 VL - 2 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a8/ LA - en ID - BUMI_2009_9_2_1_a8 ER -
%0 Journal Article %A Regazzini, Eugenio %T Convergence to Equilibrium of the Solution of Kac's Kinetic Equation. A Probabilistic View %J Bollettino della Unione matematica italiana %D 2009 %P 175-198 %V 2 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a8/ %G en %F BUMI_2009_9_2_1_a8
Regazzini, Eugenio. Convergence to Equilibrium of the Solution of Kac's Kinetic Equation. A Probabilistic View. Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 1, pp. 175-198. http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a8/