A New Proof of the Boundedness of Maximal Operators on Variable Lebesgue Spaces
Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 1, pp. 151-173

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We give a new proof using the classic Calderón-Zygmund decomposition that the Hardy-Littlewood maximal operator is bounded on the variable Lebesgue space $L^{p(\cdot)}$ whenever the exponent function $p(\cdot)$ satisfies log-Hölder continuity conditions. We include the case where $p(\cdot)$ assumes the value infinity. The same proof also shows that the fractional maximal operator $M_{a}$, $0 a n$, maps $L^{p(\cdot)}$ into $L^{q(\cdot)}$, where $1/p(\cdot) - 1/q(\cdot) = a/n$.
@article{BUMI_2009_9_2_1_a7,
     author = {Cruz-Uribe, D. and Diening, L. and Fiorenza, A.},
     title = {A {New} {Proof} of the {Boundedness} of {Maximal} {Operators} on {Variable} {Lebesgue} {Spaces}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {151--173},
     publisher = {mathdoc},
     volume = {Ser. 9, 2},
     number = {1},
     year = {2009},
     zbl = {1207.42011},
     mrnumber = {2493649},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a7/}
}
TY  - JOUR
AU  - Cruz-Uribe, D.
AU  - Diening, L.
AU  - Fiorenza, A.
TI  - A New Proof of the Boundedness of Maximal Operators on Variable Lebesgue Spaces
JO  - Bollettino della Unione matematica italiana
PY  - 2009
SP  - 151
EP  - 173
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a7/
LA  - en
ID  - BUMI_2009_9_2_1_a7
ER  - 
%0 Journal Article
%A Cruz-Uribe, D.
%A Diening, L.
%A Fiorenza, A.
%T A New Proof of the Boundedness of Maximal Operators on Variable Lebesgue Spaces
%J Bollettino della Unione matematica italiana
%D 2009
%P 151-173
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a7/
%G en
%F BUMI_2009_9_2_1_a7
Cruz-Uribe, D.; Diening, L.; Fiorenza, A. A New Proof of the Boundedness of Maximal Operators on Variable Lebesgue Spaces. Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 1, pp. 151-173. http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a7/