Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2009_9_2_1_a7, author = {Cruz-Uribe, D. and Diening, L. and Fiorenza, A.}, title = {A {New} {Proof} of the {Boundedness} of {Maximal} {Operators} on {Variable} {Lebesgue} {Spaces}}, journal = {Bollettino della Unione matematica italiana}, pages = {151--173}, publisher = {mathdoc}, volume = {Ser. 9, 2}, number = {1}, year = {2009}, zbl = {1207.42011}, mrnumber = {2493649}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a7/} }
TY - JOUR AU - Cruz-Uribe, D. AU - Diening, L. AU - Fiorenza, A. TI - A New Proof of the Boundedness of Maximal Operators on Variable Lebesgue Spaces JO - Bollettino della Unione matematica italiana PY - 2009 SP - 151 EP - 173 VL - 2 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a7/ LA - en ID - BUMI_2009_9_2_1_a7 ER -
%0 Journal Article %A Cruz-Uribe, D. %A Diening, L. %A Fiorenza, A. %T A New Proof of the Boundedness of Maximal Operators on Variable Lebesgue Spaces %J Bollettino della Unione matematica italiana %D 2009 %P 151-173 %V 2 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a7/ %G en %F BUMI_2009_9_2_1_a7
Cruz-Uribe, D.; Diening, L.; Fiorenza, A. A New Proof of the Boundedness of Maximal Operators on Variable Lebesgue Spaces. Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 1, pp. 151-173. http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a7/
[1] Interpolation of operators, volume 129 of Pure and Applied Mathematics. Academic Press Inc. (Boston, MA, 1988). | MR | Zbl
- ,[2] The fractional maximal operator and fractional integrals on variable $L^{p}$ spaces. Revista Math. Iberoamericana, 23, 3 (2007), 743-770. | fulltext EuDML | DOI | MR | Zbl
- - ,[3] New proofs of two-weight norm inequalities for the maximal operator. Georgian Math. J., 7, 1 (2000), 33-42. | fulltext EuDML | MR | Zbl
,[4] The maximal function on variable $L^{p}$ spaces. Ann. Acad. Sci. Fenn. Math., 28, 1 (2003), 223-238. See errata [5]. | fulltext EuDML | MR | Zbl
- - ,[5] Corrections to: "The maximal function on variable $L^{p}$ spaces" [Ann. Acad. Sci. Fenn. Math., 28, no. 1 (2003), 223- 238]. Ann. Acad. Sci. Fenn. Math., 29, 1 (2004), 247-249. | fulltext EuDML | MR | Zbl
- - ,[6] Maximal function on generalized Lebesgue spaces $L^{p(\cdot)}$. Math. Inequal. Appl., 7, 2 (2004), 245-253. | DOI | MR | Zbl
,[7] Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces. Bull. Sci. Math., 129, 8 (2005), 657-700. | DOI | MR | Zbl
,[8]
, Habilitation, Universität Freiburg, 2007.[9] Maximal functions in variable exponent spaces: limiting cases of the exponent. Preprint, 2007. | MR
- - - - ,[10] Open problems in variable exponent Lebesgue and Sobolev spaces. In FSDONA04 Proceedings (Drabek and Rakosnik (eds.); Milovy, Czech Republic, pages 38-58. Academy of Sciences of the Czech Republic (Prague, 2005).
- - ,[11] Fourier analysis, volume 29 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2001. | MR
,[12] On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$. J. Math. Anal. Appl., 263, 2 (2001), 424-446. | DOI | MR | Zbl
- ,[13] Weighted norm inequalities and related topics, volume 116 of North-Holland Mathematics Studies (North-Holland Publishing Co., Amsterdam, 1985). | MR | Zbl
- ,[14] On Sobolev theorem for Riesz-type potentials in Lebesgue spaces with variable exponent. Z. Anal. Anwendungen, 22, 4 (2003), 899-910. | DOI | MR | Zbl
- ,[15] On spaces $L^{p(x)}$ and $W^{k,p(x)}$. Czechoslovak Math. J., 41, 116 (4) (1991), 592-618. | fulltext EuDML | MR
- ,[16] Some remarks on the Hardy-Littlewood maximal function on variable $L^{p(x)}$ spaces. Math. Z., 251, 3 (2005), 509-521. | DOI | MR | Zbl
,[17] Weighted norm inequalities for fractional integrals. Trans. Amer. Math. Soc., 192 (1974), 261-274. | DOI | MR | Zbl
- ,[18] Orlicz spaces and modular spaces, volume 1034 of Lecture Notes in Mathematics (Springer-Verlag, Berlin, 1983). | DOI | MR | Zbl
,[19] Hardy-Littlewood maximal operator on $L^{p(x)}(\mathbb{R}^{n})$. Math. Inequal. Appl., 7, 2 (2004), 255-265. | DOI | MR | Zbl
,[20] A note on maximal operator on $l^{p_{n}}$ and $L^{p(x)}(\mathbb{R})$. J. Funct. Spaces Appl., 5, 1 (2007), 49-88. | DOI | MR | Zbl
,[21] An example of a space $L^{p(x)}$ on which the Hardy-Littlewood maximal operator is not bounded. Expo. Math., 19, 4 (2001), 369-371. | DOI | MR | Zbl
- ,[22] On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators. Integral Transforms Spec. Funct., 16, 5-6 (2005), 461-482. | DOI | MR | Zbl
,