A New Proof of the Boundedness of Maximal Operators on Variable Lebesgue Spaces
Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 1, pp. 151-173.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We give a new proof using the classic Calderón-Zygmund decomposition that the Hardy-Littlewood maximal operator is bounded on the variable Lebesgue space $L^{p(\cdot)}$ whenever the exponent function $p(\cdot)$ satisfies log-Hölder continuity conditions. We include the case where $p(\cdot)$ assumes the value infinity. The same proof also shows that the fractional maximal operator $M_{a}$, $0 a n$, maps $L^{p(\cdot)}$ into $L^{q(\cdot)}$, where $1/p(\cdot) - 1/q(\cdot) = a/n$.
@article{BUMI_2009_9_2_1_a7,
     author = {Cruz-Uribe, D. and Diening, L. and Fiorenza, A.},
     title = {A {New} {Proof} of the {Boundedness} of {Maximal} {Operators} on {Variable} {Lebesgue} {Spaces}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {151--173},
     publisher = {mathdoc},
     volume = {Ser. 9, 2},
     number = {1},
     year = {2009},
     zbl = {1207.42011},
     mrnumber = {2493649},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a7/}
}
TY  - JOUR
AU  - Cruz-Uribe, D.
AU  - Diening, L.
AU  - Fiorenza, A.
TI  - A New Proof of the Boundedness of Maximal Operators on Variable Lebesgue Spaces
JO  - Bollettino della Unione matematica italiana
PY  - 2009
SP  - 151
EP  - 173
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a7/
LA  - en
ID  - BUMI_2009_9_2_1_a7
ER  - 
%0 Journal Article
%A Cruz-Uribe, D.
%A Diening, L.
%A Fiorenza, A.
%T A New Proof of the Boundedness of Maximal Operators on Variable Lebesgue Spaces
%J Bollettino della Unione matematica italiana
%D 2009
%P 151-173
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a7/
%G en
%F BUMI_2009_9_2_1_a7
Cruz-Uribe, D.; Diening, L.; Fiorenza, A. A New Proof of the Boundedness of Maximal Operators on Variable Lebesgue Spaces. Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 1, pp. 151-173. http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a7/

[1] C. Bennett - R. Sharpley, Interpolation of operators, volume 129 of Pure and Applied Mathematics. Academic Press Inc. (Boston, MA, 1988). | MR | Zbl

[2] C. Capone - D. Cruz-Uribe - A. Fiorenza, The fractional maximal operator and fractional integrals on variable $L^{p}$ spaces. Revista Math. Iberoamericana, 23, 3 (2007), 743-770. | fulltext EuDML | DOI | MR | Zbl

[3] D. Cruz-Uribe, New proofs of two-weight norm inequalities for the maximal operator. Georgian Math. J., 7, 1 (2000), 33-42. | fulltext EuDML | MR | Zbl

[4] D. Cruz-Uribe - A. Fiorenza - C. J. Neugebauer, The maximal function on variable $L^{p}$ spaces. Ann. Acad. Sci. Fenn. Math., 28, 1 (2003), 223-238. See errata [5]. | fulltext EuDML | MR | Zbl

[5] D. Cruz-Uribe - A. Fiorenza - C. J. Neugebauer, Corrections to: "The maximal function on variable $L^{p}$ spaces" [Ann. Acad. Sci. Fenn. Math., 28, no. 1 (2003), 223- 238]. Ann. Acad. Sci. Fenn. Math., 29, 1 (2004), 247-249. | fulltext EuDML | MR | Zbl

[6] L. Diening, Maximal function on generalized Lebesgue spaces $L^{p(\cdot)}$. Math. Inequal. Appl., 7, 2 (2004), 245-253. | DOI | MR | Zbl

[7] L. Diening, Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces. Bull. Sci. Math., 129, 8 (2005), 657-700. | DOI | MR | Zbl

[8] L. Diening, Habilitation, Universität Freiburg, 2007.

[9] L. Diening - P. Harjulehto - P. Hästo - Y. Mizuta - T. Shimomura, Maximal functions in variable exponent spaces: limiting cases of the exponent. Preprint, 2007. | MR

[10] L. Diening - P. Hästo - A. Nekvinda, Open problems in variable exponent Lebesgue and Sobolev spaces. In FSDONA04 Proceedings (Drabek and Rakosnik (eds.); Milovy, Czech Republic, pages 38-58. Academy of Sciences of the Czech Republic (Prague, 2005).

[11] J. Duoandikoetxea, Fourier analysis, volume 29 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2001. | MR

[12] X. Fan - D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$. J. Math. Anal. Appl., 263, 2 (2001), 424-446. | DOI | MR | Zbl

[13] J. García-Cuerva - J. L. Rubio De Francia, Weighted norm inequalities and related topics, volume 116 of North-Holland Mathematics Studies (North-Holland Publishing Co., Amsterdam, 1985). | MR | Zbl

[14] V. Kokilashvili - S. Samko, On Sobolev theorem for Riesz-type potentials in Lebesgue spaces with variable exponent. Z. Anal. Anwendungen, 22, 4 (2003), 899-910. | DOI | MR | Zbl

[15] O. Kováčik - J. Rákosník, On spaces $L^{p(x)}$ and $W^{k,p(x)}$. Czechoslovak Math. J., 41, 116 (4) (1991), 592-618. | fulltext EuDML | MR

[16] A. K. Lerner, Some remarks on the Hardy-Littlewood maximal function on variable $L^{p(x)}$ spaces. Math. Z., 251, 3 (2005), 509-521. | DOI | MR | Zbl

[17] B. Muckenhoupt - R. Wheeden, Weighted norm inequalities for fractional integrals. Trans. Amer. Math. Soc., 192 (1974), 261-274. | DOI | MR | Zbl

[18] J. Musielak, Orlicz spaces and modular spaces, volume 1034 of Lecture Notes in Mathematics (Springer-Verlag, Berlin, 1983). | DOI | MR | Zbl

[19] A. Nekvinda, Hardy-Littlewood maximal operator on $L^{p(x)}(\mathbb{R}^{n})$. Math. Inequal. Appl., 7, 2 (2004), 255-265. | DOI | MR | Zbl

[20] A. Nekvinda, A note on maximal operator on $l^{p_{n}}$ and $L^{p(x)}(\mathbb{R})$. J. Funct. Spaces Appl., 5, 1 (2007), 49-88. | DOI | MR | Zbl

[21] L. Pick - M. Růžička, An example of a space $L^{p(x)}$ on which the Hardy-Littlewood maximal operator is not bounded. Expo. Math., 19, 4 (2001), 369-371. | DOI | MR | Zbl

[22] S. Samko, On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators. Integral Transforms Spec. Funct., 16, 5-6 (2005), 461-482. | DOI | MR | Zbl