Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2009_9_2_1_a6, author = {Altomare, Francesco}, title = {Asymptotic {Formulae} for {Bernstein-Schnabl} {Operators} and {Smoothness}}, journal = {Bollettino della Unione matematica italiana}, pages = {135--150}, publisher = {mathdoc}, volume = {Ser. 9, 2}, number = {1}, year = {2009}, zbl = {1181.41033}, mrnumber = {2493648}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a6/} }
TY - JOUR AU - Altomare, Francesco TI - Asymptotic Formulae for Bernstein-Schnabl Operators and Smoothness JO - Bollettino della Unione matematica italiana PY - 2009 SP - 135 EP - 150 VL - 2 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a6/ LA - en ID - BUMI_2009_9_2_1_a6 ER -
Altomare, Francesco. Asymptotic Formulae for Bernstein-Schnabl Operators and Smoothness. Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 1, pp. 135-150. http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a6/
[1] Limit semigroups of Bernstein-Schnabl operators associated with positive projections, Ann. Sc. Norm. Sup. Pisa, Cl. Sci. (4), 16, n. 2 (1989), 259-279. | fulltext EuDML | MR | Zbl
,[2] Korovkin-Type Approximation Theory and its Applications, De Gruyter Studies in Mathematics, 17, Walter de Gruyter, Berlin-New York, 1994. | DOI | MR | Zbl
- ,[3] On Bernstein-Schnabl operators on the unit interval, J. for Anal. and its Appl., 27, 3 (2008), 353-379. | DOI | MR | Zbl
- - ,[4] A theorem converse to a theorem of Voronovskaja type, Teor. Funkcii Funkcional Anal. i Prilozen, 2 (1966), 67-74. | MR
,[5] W. ARENDT - A. GRABOSCH - G. GREINER - U. GROH - H. P. LOTZ - U. MOUSTAKAS, R. NAGEL (ed.) - 1184 (Springer-Verlag, Berlin, 1986). | DOI | MR
- , One-parameter Semigroups of Positive Operators, Lecture Notes in Math.,[6] Inverse theorems for Bernstein polynomials, Indiana Univ. Math. Journal, 21, no. 8 (1972), 693-708. | DOI | MR | Zbl
- ,[7] Semi-groups of Operators and Approximation, Die Grundlehren der mathematischen Wissenschaften, 145 (Springer-Verlag, Berlin, 1967). | MR | Zbl
- ,[8] On $C_{0}$-semigroups generated by differential operators satisfying Wentcel's boundary conditions, Indag. Math., 89 (1986), 379-387. | MR | Zbl
- ,[9] On the degree of approximation by Bernstein polynomials, J. Analyse Math., 7 (1959), 89-104. | DOI | MR | Zbl
,[10] Constructive Approximation, Grundlehren der mathematischen Wissenschaften, 303 (Springer-Verlag, Berlin, 1993). | DOI | MR
- ,[11] K. -One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194 (Springer, New York-Berlin, 2000). | MR | Zbl
- ,[12] Note on a generalized Bohman-Korovkin theorem, J. Math. Anal. Appl., 45 (1974), 43-46. | DOI | MR | Zbl
,[13] Approximation of Functions, 2nd Ed., Chelsea Publ. Comp., New York, N.Y., 1986. | MR | Zbl
,[14] Bernstein Polynomials, 2nd Ed., Chelsea Publ. Comp., New York, N.Y., 1986. | MR
,[15] The saturation class and iterates of the Bernstein polynomials, J. Approx. Theory, 8 (1973), 1-18. | DOI | MR | Zbl
,[16] Generalized Bernstein operators and convex functions, Studia Univ. "Babeş-Bolyai", Math., 33, no. 2 (1988), 36-39. | MR | Zbl
,[17] Eine Verallgemeinerung der Bernsteinpolynome, Math. Ann., 179 (1968), 74-82. | fulltext EuDML | DOI | MR
,[18] Diffusion Processes and Partial Differential Equations, Academic Press, Boston-San Diego-London-Tokyo, 1988. | MR | Zbl
,[19] The asymptotic properties of the approximation of functions with Bernstein polynomials, Dokl. Akad. Nauk. SSSR, A (1932), 79-85. | Zbl
,