Asymptotic Formulae for Bernstein-Schnabl Operators and Smoothness
Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 1, pp. 135-150

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Of concern are Bernstein-Schnabl operators associated with a continuous selection of Borel measures on the unit interval. With respect to these sequences of positive linear operators we determine the classes of all continuous functions verifying a pointwise asymptotic formula or a uniform one. Our methods are essentially based on a general characterization of the domains of Feller semigroups in terms of asymptotic formulae and on the determination of both the saturation class of Bernstein-Schnabl operators and the Favard class of the relevant Feller semigroup.
@article{BUMI_2009_9_2_1_a6,
     author = {Altomare, Francesco},
     title = {Asymptotic {Formulae} for {Bernstein-Schnabl} {Operators} and {Smoothness}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {135--150},
     publisher = {mathdoc},
     volume = {Ser. 9, 2},
     number = {1},
     year = {2009},
     zbl = {1181.41033},
     mrnumber = {2493648},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a6/}
}
TY  - JOUR
AU  - Altomare, Francesco
TI  - Asymptotic Formulae for Bernstein-Schnabl Operators and Smoothness
JO  - Bollettino della Unione matematica italiana
PY  - 2009
SP  - 135
EP  - 150
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a6/
LA  - en
ID  - BUMI_2009_9_2_1_a6
ER  - 
%0 Journal Article
%A Altomare, Francesco
%T Asymptotic Formulae for Bernstein-Schnabl Operators and Smoothness
%J Bollettino della Unione matematica italiana
%D 2009
%P 135-150
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a6/
%G en
%F BUMI_2009_9_2_1_a6
Altomare, Francesco. Asymptotic Formulae for Bernstein-Schnabl Operators and Smoothness. Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 1, pp. 135-150. http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a6/