Asymptotic Formulae for Bernstein-Schnabl Operators and Smoothness
Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 1, pp. 135-150.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Of concern are Bernstein-Schnabl operators associated with a continuous selection of Borel measures on the unit interval. With respect to these sequences of positive linear operators we determine the classes of all continuous functions verifying a pointwise asymptotic formula or a uniform one. Our methods are essentially based on a general characterization of the domains of Feller semigroups in terms of asymptotic formulae and on the determination of both the saturation class of Bernstein-Schnabl operators and the Favard class of the relevant Feller semigroup.
@article{BUMI_2009_9_2_1_a6,
     author = {Altomare, Francesco},
     title = {Asymptotic {Formulae} for {Bernstein-Schnabl} {Operators} and {Smoothness}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {135--150},
     publisher = {mathdoc},
     volume = {Ser. 9, 2},
     number = {1},
     year = {2009},
     zbl = {1181.41033},
     mrnumber = {2493648},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a6/}
}
TY  - JOUR
AU  - Altomare, Francesco
TI  - Asymptotic Formulae for Bernstein-Schnabl Operators and Smoothness
JO  - Bollettino della Unione matematica italiana
PY  - 2009
SP  - 135
EP  - 150
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a6/
LA  - en
ID  - BUMI_2009_9_2_1_a6
ER  - 
%0 Journal Article
%A Altomare, Francesco
%T Asymptotic Formulae for Bernstein-Schnabl Operators and Smoothness
%J Bollettino della Unione matematica italiana
%D 2009
%P 135-150
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a6/
%G en
%F BUMI_2009_9_2_1_a6
Altomare, Francesco. Asymptotic Formulae for Bernstein-Schnabl Operators and Smoothness. Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 1, pp. 135-150. http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a6/

[1] F. Altomare, Limit semigroups of Bernstein-Schnabl operators associated with positive projections, Ann. Sc. Norm. Sup. Pisa, Cl. Sci. (4), 16, n. 2 (1989), 259-279. | fulltext EuDML | MR | Zbl

[2] F. Altomare - M. Campiti, Korovkin-Type Approximation Theory and its Applications, De Gruyter Studies in Mathematics, 17, Walter de Gruyter, Berlin-New York, 1994. | DOI | MR | Zbl

[3] F. Altomare - V. Leonessa - I. Rasa, On Bernstein-Schnabl operators on the unit interval, J. for Anal. and its Appl., 27, 3 (2008), 353-379. | DOI | MR | Zbl

[4] V. G. Amel'Kovic, A theorem converse to a theorem of Voronovskaja type, Teor. Funkcii Funkcional Anal. i Prilozen, 2 (1966), 67-74. | MR

[5] W. ARENDT - A. GRABOSCH - G. GREINER - U. GROH - H. P. LOTZ - U. MOUSTAKAS, R. NAGEL (ed.) - F. Neubrander - U. Schlotterbeck, One-parameter Semigroups of Positive Operators, Lecture Notes in Math., 1184 (Springer-Verlag, Berlin, 1986). | DOI | MR

[6] H. Berens - G. G. Lorentz, Inverse theorems for Bernstein polynomials, Indiana Univ. Math. Journal, 21, no. 8 (1972), 693-708. | DOI | MR | Zbl

[7] P. L. Butzer - H. Berens, Semi-groups of Operators and Approximation, Die Grundlehren der mathematischen Wissenschaften, 145 (Springer-Verlag, Berlin, 1967). | MR | Zbl

[8] Ph. Clément - C. A. Timmermans, On $C_{0}$-semigroups generated by differential operators satisfying Wentcel's boundary conditions, Indag. Math., 89 (1986), 379-387. | MR | Zbl

[9] K. De Leeuw, On the degree of approximation by Bernstein polynomials, J. Analyse Math., 7 (1959), 89-104. | DOI | MR | Zbl

[10] R. A. De Vore - G. G. Lorentz, Constructive Approximation, Grundlehren der mathematischen Wissenschaften, 303 (Springer-Verlag, Berlin, 1993). | DOI | MR

[11] K. -J. Engel - R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194 (Springer, New York-Berlin, 2000). | MR | Zbl

[12] M. W. Grossman, Note on a generalized Bohman-Korovkin theorem, J. Math. Anal. Appl., 45 (1974), 43-46. | DOI | MR | Zbl

[13] G. G. Lorentz, Approximation of Functions, 2nd Ed., Chelsea Publ. Comp., New York, N.Y., 1986. | MR | Zbl

[14] G. G. Lorentz, Bernstein Polynomials, 2nd Ed., Chelsea Publ. Comp., New York, N.Y., 1986. | MR

[15] C. A. Micchelli, The saturation class and iterates of the Bernstein polynomials, J. Approx. Theory, 8 (1973), 1-18. | DOI | MR | Zbl

[16] I. Rasa, Generalized Bernstein operators and convex functions, Studia Univ. "Babeş-Bolyai", Math., 33, no. 2 (1988), 36-39. | MR | Zbl

[17] R. Schnabl, Eine Verallgemeinerung der Bernsteinpolynome, Math. Ann., 179 (1968), 74-82. | fulltext EuDML | DOI | MR

[18] K. Taira, Diffusion Processes and Partial Differential Equations, Academic Press, Boston-San Diego-London-Tokyo, 1988. | MR | Zbl

[19] E. V. Voronovskaja, The asymptotic properties of the approximation of functions with Bernstein polynomials, Dokl. Akad. Nauk. SSSR, A (1932), 79-85. | Zbl