Three Dimensional Vortices in the Nonlinear Wave Equation
Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 1, pp. 105-134
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
We prove the existence of rotating solitary waves (vortices) for the nonlinear Klein-Gordon equation with nonnegative potential, by finding nonnegative cylindrical solutions to the standing equation \begin{equation} \tag{\dag} -\Delta u + \frac{\mu}{|y|^{2}} u + \lambda u = g(u), \quad u \in H^{1}(\mathbb{R}^{N}), \quad \int_{\mathbb{R}^{N}} \frac{u^{2}}{|y|^{2}} \, dx \infty,\end{equation} where $x=(y,z) \in \mathbb{R}^{k} \times \mathbb{R}^{N-k}$, $N > k \ge 2$, $\mu > 0$ and $\lambda \ge 0$. The nonnegativity of the potential makes the equation suitable for physical models and guarantees the wellposedness of the corresponding Cauchy problem, but it prevents the use of standard arguments in providing the functional associated to $(\dag)$ with bounded Palais-Smale sequences.
@article{BUMI_2009_9_2_1_a5,
author = {Badiale, Marino and Benci, Vieri and Rolando, Sergio},
title = {Three {Dimensional} {Vortices} in the {Nonlinear} {Wave} {Equation}},
journal = {Bollettino della Unione matematica italiana},
pages = {105--134},
year = {2009},
volume = {Ser. 9, 2},
number = {1},
zbl = {1178.35263},
mrnumber = {2493647},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a5/}
}
TY - JOUR AU - Badiale, Marino AU - Benci, Vieri AU - Rolando, Sergio TI - Three Dimensional Vortices in the Nonlinear Wave Equation JO - Bollettino della Unione matematica italiana PY - 2009 SP - 105 EP - 134 VL - 2 IS - 1 UR - http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a5/ LA - en ID - BUMI_2009_9_2_1_a5 ER -
Badiale, Marino; Benci, Vieri; Rolando, Sergio. Three Dimensional Vortices in the Nonlinear Wave Equation. Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 1, pp. 105-134. http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a5/