Three Dimensional Vortices in the Nonlinear Wave Equation
Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 1, pp. 105-134.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We prove the existence of rotating solitary waves (vortices) for the nonlinear Klein-Gordon equation with nonnegative potential, by finding nonnegative cylindrical solutions to the standing equation \begin{equation} \tag{\dag} -\Delta u + \frac{\mu}{|y|^{2}} u + \lambda u = g(u), \quad u \in H^{1}(\mathbb{R}^{N}), \quad \int_{\mathbb{R}^{N}} \frac{u^{2}}{|y|^{2}} \, dx \infty,\end{equation} where $x=(y,z) \in \mathbb{R}^{k} \times \mathbb{R}^{N-k}$, $N > k \ge 2$, $\mu > 0$ and $\lambda \ge 0$. The nonnegativity of the potential makes the equation suitable for physical models and guarantees the wellposedness of the corresponding Cauchy problem, but it prevents the use of standard arguments in providing the functional associated to $(\dag)$ with bounded Palais-Smale sequences.
@article{BUMI_2009_9_2_1_a5,
     author = {Badiale, Marino and Benci, Vieri and Rolando, Sergio},
     title = {Three {Dimensional} {Vortices} in the {Nonlinear} {Wave} {Equation}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {105--134},
     publisher = {mathdoc},
     volume = {Ser. 9, 2},
     number = {1},
     year = {2009},
     zbl = {1178.35263},
     mrnumber = {2493647},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a5/}
}
TY  - JOUR
AU  - Badiale, Marino
AU  - Benci, Vieri
AU  - Rolando, Sergio
TI  - Three Dimensional Vortices in the Nonlinear Wave Equation
JO  - Bollettino della Unione matematica italiana
PY  - 2009
SP  - 105
EP  - 134
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a5/
LA  - en
ID  - BUMI_2009_9_2_1_a5
ER  - 
%0 Journal Article
%A Badiale, Marino
%A Benci, Vieri
%A Rolando, Sergio
%T Three Dimensional Vortices in the Nonlinear Wave Equation
%J Bollettino della Unione matematica italiana
%D 2009
%P 105-134
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a5/
%G en
%F BUMI_2009_9_2_1_a5
Badiale, Marino; Benci, Vieri; Rolando, Sergio. Three Dimensional Vortices in the Nonlinear Wave Equation. Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 1, pp. 105-134. http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a5/

[1] A. Ambrosetti - P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381. | MR | Zbl

[2] A. Ambrosetti - M. Struwe, Existence of steady vortex rings in an ideal fluid, Arch. Rational Mech. Anal., 108 (1989), 97-109. | DOI | MR | Zbl

[3] M. Badiale - V. Benci - S. Rolando, Solitary waves: physical aspects and mathematical results, Rend. Sem. Math. Univ. Pol. Torino, 62 (2004), 107-154. | MR | Zbl

[4] M. Badiale - V. Benci - S. Rolando, A nonlinear elliptic equation with singular potential and applications to nonlinear field equations, J. Eur. Math. Soc., 9 (2007), 355-381. | fulltext EuDML | DOI | MR | Zbl

[5] M. Badiale - S. Rolando, Vortices with prescribed $L^{2}$ norm in the nonlinear wave equation, preprint 2008. | DOI | MR | Zbl

[6] M. Badiale - G. Tarantello, A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics, Arch. Rational Mech. Anal., 163 (2002), 259-293. | DOI | MR | Zbl

[7] V. Benci - T. D'Aprile, The semiclassical limit of the nonlinear Schrödinger equation in a radial potential, J. Differential Equations, 184 (2002), 109-138. | DOI | MR

[8] V. Benci - D. Fortunato, Existence of 3D-vortices in abelian gauge theories, Mediterr. J. Math., 3 (2006), 409-418. | DOI | MR | Zbl

[9] V. Benci - D. Fortunato, Solitary waves in the nonlinear wave equation and in gauge theories, J. Fixed Point Theory Appl., 1 (2007), 61-86. | DOI | MR | Zbl

[10] V. Benci - D. Fortunato, Vortices in abelian gauge theories, work in progress. | Zbl

[11] V. Benci - N. Visciglia, Solitary waves with non vanishing angular momentum, Adv. Nonlinear Stud., 3 (2003), 151-160. | DOI | MR | Zbl

[12] H. Berestycki - P. L. Lions, Nonlinear scalar field equations, I - Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345. | DOI | MR | Zbl

[13] M. S. Berger, On the existence and structure of stationary states for a nonlinear Klein-Gordon equation, J. Funct. Analysis, 9 (1972), 249-261. | MR | Zbl

[14] Y. Brihaye - B. Hartmann - W. J. Zakrzewski, Spinning solitons of a modified non-linear Schroedinger equation, Phys. Rev. D, 69, 087701. | DOI | MR

[15] S. Coleman - V. Glaser - A. Martin, Action minima among solutions to a class of euclidean scalar field equation, Comm. Math. Phys, 58 (1978), 211-221. | MR

[16] S. Coleman, Q-Balls, Nucl. Phys. B, 262 (1985), 263-283. | DOI | MR

[17] L. C. Crasovan - B. A. Malomed - D. Mihalache, Spinning solitons in cubic-quintic nonlinear media, Pramana, 57 (2001), 1041- 1059.

[18] T. D'Aprile, On a class of solutions with non-vanishing angular momentum for nonlinear Schrödinger equations, Diff. Integral Eq., 16 (2003), 349-384. | MR

[19] G. H. Derrick, Comments on nonlinear wave equations as models for elementary particles, J. Math. Phys., 5 (1964), 1252-1254. | DOI | MR

[20] M. Giaquinta, Introduction to regularity theory for nonlinear elliptic systems, Birkhäuser Verlag, 1993. | MR | Zbl

[21] C. Kim - S. Kim - Y. Kim, Global nontopological vortices, Phys. Rev. D, 47 (1985), 5434-5443.

[22] A. Kusenko - M. Shaposhnikov, Supersymmetric Q-balls as dark matter, Phys. Lett. B, 418 (1998), 46-54.

[23] I. Kuzin - S. Pohožaev, Entire solutions of semilinear elliptic equations, PNLDE, vol. 33, Birkhäuser, 1997.

[24] P. L. Lions, Solutions complexes d'équations elliptiques semilinéaires dans $\mathbb{R}^{N}$, C. R. Acad. Sci. Paris, série I, 302 (1986), 673-676. | MR | Zbl

[25] R. S. Palais, The principle of symmetric criticality, Commun. Math. Phys., 69 (1979), 19-30. | MR | Zbl

[26] R. Rajaraman, Solitons and instantons, North-Holland Physics Publishing, 1987. | MR

[27] G. Rosen, Particlelike solutions to nonlinear complex scalar field theories with positive-definite energy densities, J. Math. Phys., 9 (1968), 996-998.

[28] S. Solimini, A note on compactness-type properties with respect to Lorentz norms of bounded subsets of a Sobolev space, Ann. Inst. Henry Poincaré - Analyse non linéaire, 12 (1995), 319-337. | fulltext EuDML | DOI | MR | Zbl

[29] J. Shatah, Stable standing waves of nonlinear Klein-Gordon equations, Comm. Math. Phys., 91 (1983), 313-327. | MR | Zbl

[30] J. Shatah, Unstable ground state of nonlinear Klein-Gordon equations, Trans. Amer. Math. Soc., 290 (1985), 701-710. | DOI | MR | Zbl

[31] W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), 149-172. | MR | Zbl

[32] W. A. Strauss, Nonlinear invariant wave equations, Lecture Notes in Phisics, vol. 23, Springer, 1978. | MR

[33] M. S. Volkov, Existence of spinning solitons in field theory, eprint arXiv:hep-th/ 0401030 (2004).

[34] M. S. Volkov - E. Wöhnert, Spinning Q-balls, Phys. Rev. D, 66 (2002) 085003.

[35] M. Willem, Minimax theorems, PNLDE, vol. 24, Birkhäuser, 1996. | DOI | MR

[36] G. B. Witham, Linear and nonlinear waves, John Wiley & Sons, 1974. | MR