Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2009_9_2_1_a0, author = {Toader, Rodica and Zanini, Chiara}, title = {An {Artificial} {Viscosity} {Approach} to {Quasistatic} {Crack} {Growth}}, journal = {Bollettino della Unione matematica italiana}, pages = {1--35}, publisher = {mathdoc}, volume = {Ser. 9, 2}, number = {1}, year = {2009}, zbl = {1180.35521}, mrnumber = {2493642}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a0/} }
TY - JOUR AU - Toader, Rodica AU - Zanini, Chiara TI - An Artificial Viscosity Approach to Quasistatic Crack Growth JO - Bollettino della Unione matematica italiana PY - 2009 SP - 1 EP - 35 VL - 2 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a0/ LA - en ID - BUMI_2009_9_2_1_a0 ER -
Toader, Rodica; Zanini, Chiara. An Artificial Viscosity Approach to Quasistatic Crack Growth. Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 1, pp. 1-35. http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a0/
[1] A simplified model for the evolution of a fracture in a membrane, Preprint (2000). | Zbl
- ,[2] A density result in two-dimensional linearized elasticity, and applications. Arch. Rational Mech. Anal., 167 (2003), 211-233. | DOI | MR | Zbl
,[3] Quasistatic Crack Growth in Nonlinear Elasticity, Arch. Rational Mech. Anal., 176 (2005), 165-225. | DOI | MR | Zbl
, AND ,[4] A model for the quasi-static growth of brittle fractures: existence and approximation results, Arch. Rational Mech. Anal., 162 (2002), 101-135. | DOI | MR | Zbl
- ,[5] A model for the quasi-static growth of brittle fractures based on local minimization, Math. Models Methods Appl. Sci., 12 (2002), 1773-1799. | DOI | MR | Zbl
- ,[6] Ordinary Differential Equations in Banach Spaces. Lect. Notes Math. 596, Springer-Verlag, Berlin-New York, 1977. | MR | Zbl
,[7] Existence and convergence for quasi-static evolution in brittle fracture. Comm. Pure Appl. Math., 56 (2003), 1465-1500. | DOI | MR | Zbl
- ,[8] Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46 (1998), 1319-1342. | DOI | MR | Zbl
- ,[9] The evolution of stress intensity factors in the propagation of two dimensional cracks, European J. Appl. Math., 11 (2000), 453-471. | DOI | MR | Zbl
- - ,[10] The Phenomena of Rupture and Flow in Solids, Philos. Trans. R. Soc. London Ser. A, 221 (1920), 163-198.
,[11] Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, 24. Pitman (Advanced Publishing Program), Boston, MA, 1985. | MR | Zbl
,[12] Singularities in Boundary Value Problems, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], 22. Masson, Paris; Springer-Verlag, Berlin, 1992. | MR
,[13] Ordinary Differential Equations, Pure and Applied Mathematics, XXI, Krieger, Florida, 1980. | MR
,[14] Energy release rate for cracks in finite-strain elasticity. Math. Methods Applied Sciences, 31 (2008), 501-528. | DOI | MR | Zbl
- ,[15] The Implicit Function Theorem. History, theory and applications. Birkhäuser, Boston, 2002. | DOI | MR | Zbl
- ,[16] Evolution of Rate-Independent Systems, Handbook of Differential Equations, Evolutionary Equations, v. 2, C.M. Dafermos, E. Feireisl (eds.) 461-559 Elsevier, Amsterdam, 2005. | MR | Zbl
,[17] Variational Techniques for Quasistatic Evolutionary Models, PhD Thesis, 2006, see http://digitallibrary.sissa.it/handle/1963/1874
,