Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2008_9_1_3_a4, author = {Delitala, Marcello}, title = {On the {Mathematical} {Modelling} of {Complex} {Biological} {Systems.} {A} {Kinetic} {Theory} {Approach}}, journal = {Bollettino della Unione matematica italiana}, pages = {603--618}, publisher = {mathdoc}, volume = {Ser. 9, 1}, number = {3}, year = {2008}, zbl = {1188.92002}, mrnumber = {2455334}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a4/} }
TY - JOUR AU - Delitala, Marcello TI - On the Mathematical Modelling of Complex Biological Systems. A Kinetic Theory Approach JO - Bollettino della Unione matematica italiana PY - 2008 SP - 603 EP - 618 VL - 1 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a4/ LA - en ID - BUMI_2008_9_1_3_a4 ER -
%0 Journal Article %A Delitala, Marcello %T On the Mathematical Modelling of Complex Biological Systems. A Kinetic Theory Approach %J Bollettino della Unione matematica italiana %D 2008 %P 603-618 %V 1 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a4/ %G en %F BUMI_2008_9_1_3_a4
Delitala, Marcello. On the Mathematical Modelling of Complex Biological Systems. A Kinetic Theory Approach. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 3, pp. 603-618. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a4/
[1] Modelling complex living systems. A kinetic theory and stocastic game approach, Birkhauser, Boston, (2008). | MR | Zbl
,[2] On the foundation of cancer modeling - selected topics, speculations, and perspectives, Math. Mod. Meth. Appl. Sci., 18 (2008), 593-646. | DOI | MR | Zbl
- - ,[3] Kinetic (cellular) models of cell progression and competition with the immune system, Z. angew. Math. Phys., 55 (2004), 95-317. | DOI | MR | Zbl
- ,[4] Modelling complex biological systems - A kinetic theory approach, Birkhäuser, Boston, (2006). | MR | Zbl
- ,[5] Qualitative Analysis of a mean field model of tumor-immune system competition, Math. Mod. Meth. Appl. Sci., 13 (2003), 187-206. | DOI | MR | Zbl
- ,[6] From the mathematical kinetic theory of active particles to modelling genetic mutations and immune competition, Internal Report, Dept. Mathematics, Politecnico, Torino (2008).
- ,[7] Analysis of a new model for tumor-immune system competition including long time scale effects, Math. Mod. Meth. Appl. Sci., 14 (2004), 1657-1681. | DOI | MR | Zbl
,[8] Tumor-immune system interaction: modeling the tumor-stimulated proliferation of effectors and immunotherapy, Math. Mod. Meth. Appl. Sci., 16 (2006), 1375-1401. | DOI | MR | Zbl
,[9] Evolutionary dynamics in carcinogenesis, Math. Mod. Meth. Appl. Sci., 15 (2005), 1619-1638. | DOI | MR | Zbl
- - ,[10] Stochastic modeling of loss- and gain-of-function mutation in cancer, Math. Mod. Meth. Appl. Sci., 17 (2007), 1647-1673. | DOI | MR | Zbl
,[11] The Hallmarks of cancer, Cell, 100, 57-70, (2000).
- ,[12] From molecular to modular cell biology, Nature, 402 (1999), c47-c52.
- - - ,[13] Mathematical model of tumor invasion along linear or tubular structures, Math. Comp. Mod., 41 (2005), 1083-1096. | DOI | MR | Zbl
- - ,[14] Cancer as an evolutionary and ecological process, Nature Reviews Cancer, 6 (2006), 924-935.
- - - ,[15] Esponential decay for the fragmentation or cell division equation, J. Diff. Equations, 12, (2005), 155-177. | DOI | MR | Zbl
- ,