On the Mathematical Modelling of Complex Biological Systems. A Kinetic Theory Approach
Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 3, pp. 603-618.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

This paper deals with the mathematical modelling, based on the kinetic theory of active particles, of a complex biological living system constituted by different populations of cells. The modelling refers to the competition between immune and tumor cells. Moreover, a qualitative and quantitative analysis is developed, to show how the models can describe several interesting phenomena related to biological applications. A final section highlights further research perspectives related to the modelling of genetic mutations.
@article{BUMI_2008_9_1_3_a4,
     author = {Delitala, Marcello},
     title = {On the {Mathematical} {Modelling} of {Complex} {Biological} {Systems.} {A} {Kinetic} {Theory} {Approach}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {603--618},
     publisher = {mathdoc},
     volume = {Ser. 9, 1},
     number = {3},
     year = {2008},
     zbl = {1188.92002},
     mrnumber = {2455334},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a4/}
}
TY  - JOUR
AU  - Delitala, Marcello
TI  - On the Mathematical Modelling of Complex Biological Systems. A Kinetic Theory Approach
JO  - Bollettino della Unione matematica italiana
PY  - 2008
SP  - 603
EP  - 618
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a4/
LA  - en
ID  - BUMI_2008_9_1_3_a4
ER  - 
%0 Journal Article
%A Delitala, Marcello
%T On the Mathematical Modelling of Complex Biological Systems. A Kinetic Theory Approach
%J Bollettino della Unione matematica italiana
%D 2008
%P 603-618
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a4/
%G en
%F BUMI_2008_9_1_3_a4
Delitala, Marcello. On the Mathematical Modelling of Complex Biological Systems. A Kinetic Theory Approach. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 3, pp. 603-618. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a4/

[1] N. Bellomo, Modelling complex living systems. A kinetic theory and stocastic game approach, Birkhauser, Boston, (2008). | MR | Zbl

[2] N. Bellomo - N. K. Li - P. K. Maini, On the foundation of cancer modeling - selected topics, speculations, and perspectives, Math. Mod. Meth. Appl. Sci., 18 (2008), 593-646. | DOI | MR | Zbl

[3] A. Bellouquid - M. Delitala, Kinetic (cellular) models of cell progression and competition with the immune system, Z. angew. Math. Phys., 55 (2004), 95-317. | DOI | MR | Zbl

[4] A. Bellouquid - M. Delitala, Modelling complex biological systems - A kinetic theory approach, Birkhäuser, Boston, (2006). | MR | Zbl

[5] E. De Angelis - P.E. Jabin, Qualitative Analysis of a mean field model of tumor-immune system competition, Math. Mod. Meth. Appl. Sci., 13 (2003), 187-206. | DOI | MR | Zbl

[6] M. Delitala - G. Forni, From the mathematical kinetic theory of active particles to modelling genetic mutations and immune competition, Internal Report, Dept. Mathematics, Politecnico, Torino (2008).

[7] L. Derbel, Analysis of a new model for tumor-immune system competition including long time scale effects, Math. Mod. Meth. Appl. Sci., 14 (2004), 1657-1681. | DOI | MR | Zbl

[8] A. D'Onofrio, Tumor-immune system interaction: modeling the tumor-stimulated proliferation of effectors and immunotherapy, Math. Mod. Meth. Appl. Sci., 16 (2006), 1375-1401. | DOI | MR | Zbl

[9] R. A. Gatenby - T. L. Vincent - R. J. Gillies, Evolutionary dynamics in carcinogenesis, Math. Mod. Meth. Appl. Sci., 15 (2005), 1619-1638. | DOI | MR | Zbl

[10] N. Komarova, Stochastic modeling of loss- and gain-of-function mutation in cancer, Math. Mod. Meth. Appl. Sci., 17 (2007), 1647-1673. | DOI | MR | Zbl

[11] D. Hanahan - R. A. Weinberg, The Hallmarks of cancer, Cell, 100, 57-70, (2000).

[12] H. L. Hartwell - J. J. Hopfield - S. Leibner - A. W. Murray, From molecular to modular cell biology, Nature, 402 (1999), c47-c52.

[13] M. Kolev - E. Kozlowska - M. Lachowicz, Mathematical model of tumor invasion along linear or tubular structures, Math. Comp. Mod., 41 (2005), 1083-1096. | DOI | MR | Zbl

[14] L. M. F. Merlo - J. W. Pepper - B. J. Reid - C. C. Maley, Cancer as an evolutionary and ecological process, Nature Reviews Cancer, 6 (2006), 924-935.

[15] B. Perthame - L. Ryzhik, Esponential decay for the fragmentation or cell division equation, J. Diff. Equations, 12, (2005), 155-177. | DOI | MR | Zbl