On the Mathematical Modelling of Complex Biological Systems. A Kinetic Theory Approach
Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 3, pp. 603-618

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

This paper deals with the mathematical modelling, based on the kinetic theory of active particles, of a complex biological living system constituted by different populations of cells. The modelling refers to the competition between immune and tumor cells. Moreover, a qualitative and quantitative analysis is developed, to show how the models can describe several interesting phenomena related to biological applications. A final section highlights further research perspectives related to the modelling of genetic mutations.
@article{BUMI_2008_9_1_3_a4,
     author = {Delitala, Marcello},
     title = {On the {Mathematical} {Modelling} of {Complex} {Biological} {Systems.} {A} {Kinetic} {Theory} {Approach}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {603--618},
     publisher = {mathdoc},
     volume = {Ser. 9, 1},
     number = {3},
     year = {2008},
     zbl = {1188.92002},
     mrnumber = {2455334},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a4/}
}
TY  - JOUR
AU  - Delitala, Marcello
TI  - On the Mathematical Modelling of Complex Biological Systems. A Kinetic Theory Approach
JO  - Bollettino della Unione matematica italiana
PY  - 2008
SP  - 603
EP  - 618
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a4/
LA  - en
ID  - BUMI_2008_9_1_3_a4
ER  - 
%0 Journal Article
%A Delitala, Marcello
%T On the Mathematical Modelling of Complex Biological Systems. A Kinetic Theory Approach
%J Bollettino della Unione matematica italiana
%D 2008
%P 603-618
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a4/
%G en
%F BUMI_2008_9_1_3_a4
Delitala, Marcello. On the Mathematical Modelling of Complex Biological Systems. A Kinetic Theory Approach. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 3, pp. 603-618. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a4/