Singular Bundles with Bounded $L^2$-Curvatures
Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 3, pp. 881-901
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
We consider calculus of variations of the Yang-Mills functional in dimensions larger than the critical dimension 4. We explain how this naturally leads to a class of - a priori not well-defined - singular bundles including possibly "almost everywhere singular bundles". In order to overcome this difficulty, we suggest a suitable new framework, namely the notion of singular bundles with bounded $L^2$-curvatures.
@article{BUMI_2008_9_1_3_a17,
author = {Kessel, Thiemo and Rivi\`ere, Tristan},
title = {Singular {Bundles} with {Bounded} $L^2${-Curvatures}},
journal = {Bollettino della Unione matematica italiana},
pages = {881--901},
publisher = {mathdoc},
volume = {Ser. 9, 1},
number = {3},
year = {2008},
zbl = {1197.58005},
mrnumber = {2455351},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a17/}
}
TY - JOUR AU - Kessel, Thiemo AU - Rivière, Tristan TI - Singular Bundles with Bounded $L^2$-Curvatures JO - Bollettino della Unione matematica italiana PY - 2008 SP - 881 EP - 901 VL - 1 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a17/ LA - en ID - BUMI_2008_9_1_3_a17 ER -
Kessel, Thiemo; Rivière, Tristan. Singular Bundles with Bounded $L^2$-Curvatures. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 3, pp. 881-901. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a17/