Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2008_9_1_3_a17, author = {Kessel, Thiemo and Rivi\`ere, Tristan}, title = {Singular {Bundles} with {Bounded} $L^2${-Curvatures}}, journal = {Bollettino della Unione matematica italiana}, pages = {881--901}, publisher = {mathdoc}, volume = {Ser. 9, 1}, number = {3}, year = {2008}, zbl = {1197.58005}, mrnumber = {2455351}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a17/} }
TY - JOUR AU - Kessel, Thiemo AU - Rivière, Tristan TI - Singular Bundles with Bounded $L^2$-Curvatures JO - Bollettino della Unione matematica italiana PY - 2008 SP - 881 EP - 901 VL - 1 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a17/ LA - en ID - BUMI_2008_9_1_3_a17 ER -
Kessel, Thiemo; Rivière, Tristan. Singular Bundles with Bounded $L^2$-Curvatures. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 3, pp. 881-901. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a17/
[Be1] The approximation problem for Sobolev maps between two manifolds. Acta Math., 167, no. 3-4 (1991), 153-206. | DOI | MR | Zbl
,[Be2] A characterization of maps in $H^1(B^3, S^2)$ which can be approximated by smooth maps. Ann. Inst. H. Poincaré Anal. Non Linéaire, 7, no. 4 (1990), 269-286. | fulltext EuDML | DOI | MR | Zbl
,[BCDH] A cohomological criterion for density of smooth maps in Sobolev spaces between two manifolds. Nematic (Orsay, 1990), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 332, Kluwer Acad. Publ., Dordrecht, (1991), 15-23. | MR | Zbl
- - - ,[BBC] Relaxed energies for harmonic maps. Variational methods (Paris, 1988), 37-52, Progr. Nonlinear Differential Equations Appl., 4, Birkauser Boston, Boston, MA, 1990. | DOI | MR | Zbl
- - ,[BCL] Harmonic maps with defects. Comm. Math. Phys., 107, no. 4 (1986), 649-705. | MR | Zbl
- - ,[DK] The geometry of four-manifolds'. Oxford, (1990). | MR | Zbl
- , `[DT] Gauge theory in higher dimensions. The geometric universe (Oxford, 1996), 31-47, Oxford Univ. Press, Oxford, 1998. | MR | Zbl
- ,[DV] Équation de Yang et Mills, modèles $\sigma$ à deux dimensions et généralisation. Progr. Math., 37, Birkhauser Boston, Boston, MA, 1983. | MR | Zbl
,[FrU] Instantons and four-manifolds. MSRI Pub. 1, Springer, (1991). | DOI | MR
- ,[GMS] Cartesian currents in the calculus of variations I and II. Springer-Verlag, Berlin, 1998. | DOI | MR
- - ,[HL] A remark on $H^1$ mappings of Riemannian manifolds. Manuscripta Math., 56 (1986), 1-10. | fulltext EuDML | DOI | MR
- ,[He] Harmonic maps, conservation laws and moving frames. Diderot, (1996). | DOI | MR
,[Is1] Energy estimate, energy gap phenomenon and relaxed energy for Yang-Mills functional. J. Geom. Anal., 8 (1998), 43-64. | DOI | MR | Zbl
,[Is2] Relaxed Yang-Mills functional over 4 manifolds. Topological Methods in Non Linear Analysis, 6 (1995), 235-253. | DOI | MR | Zbl
,[KR] Approximation results for singular bundles with bounded $L^p$-curvatures. in preparation (2008).
- ,[MR] A partial regularity result for a class of stationary Yang-Mills fields in higher dimensions. Rev. Mat. Iberoamericana, 19, no. 1 (2003), 195-219. | fulltext EuDML | DOI | MR
- ,[NR1] Existence of universal connections. Amer. J. Math., 83 (1961), 563-572. | DOI | MR | Zbl
- ,[NR2] Existence of universal connections II. Amer. J. Math., 85 (1963), 223-231. | DOI | MR | Zbl
- ,[Ri1] Everywhere discontinuous harmonic maps into spheres. Acta Math., 175, no. 2 (1995), 197-226. | DOI | MR
,[SaU] The existence of minimal immersions of 2-spheres. Ann. of Math., 113 (1981), 1-24. | DOI | MR | Zbl
- ,[ScU] A regularity theory for harmonic maps. J. Diff. Geom., 17 (1982), 307-335. | MR | Zbl
- ,[ScU2] Approximation theorems for Sobolev mappings preprint (1984).
- ,[Se] A Direct Method for Minimizing the Yang-Mills Functional over 4-Manifolds, Commun. Math. Phys., 86 (1982), 515-527. | MR | Zbl
,[Ti] Gauge theory and calibrated geometry I. Ann. of Math. (2) 151, no. 1 (2000), 193-268. | fulltext EuDML | DOI | MR | Zbl
,[TT] A singularity removal theorem for Yang-Mills fields in higher dimensions. J. Amer. Math. Soc., 17, no. 3 (2004), 557-593 | DOI | MR | Zbl
- ,[Uh1] Connections with $L^p$ bounds on curvature. Comm. Math. Phys., 83, (1982), 31-42. | MR | Zbl
,[Uh2] Removable singularities in Yang-Mills fields. Comm. Math. Phys., 83, (1982), 11-29. | MR | Zbl
,[Uh3] Variational problems for gauge fields. Seminar on Differential Geometry, Princeton University Press, 1982. | MR | Zbl
,[Wh] Homotopy classes in Sobolev spaces and the existence of energy minimizing maps. Acta. Math., 160 (1988), 1-17. | DOI | MR | Zbl
,