Singular Bundles with Bounded $L^2$-Curvatures
Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 3, pp. 881-901

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We consider calculus of variations of the Yang-Mills functional in dimensions larger than the critical dimension 4. We explain how this naturally leads to a class of - a priori not well-defined - singular bundles including possibly "almost everywhere singular bundles". In order to overcome this difficulty, we suggest a suitable new framework, namely the notion of singular bundles with bounded $L^2$-curvatures.
@article{BUMI_2008_9_1_3_a17,
     author = {Kessel, Thiemo and Rivi\`ere, Tristan},
     title = {Singular {Bundles} with {Bounded} $L^2${-Curvatures}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {881--901},
     publisher = {mathdoc},
     volume = {Ser. 9, 1},
     number = {3},
     year = {2008},
     zbl = {1197.58005},
     mrnumber = {2455351},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a17/}
}
TY  - JOUR
AU  - Kessel, Thiemo
AU  - Rivière, Tristan
TI  - Singular Bundles with Bounded $L^2$-Curvatures
JO  - Bollettino della Unione matematica italiana
PY  - 2008
SP  - 881
EP  - 901
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a17/
LA  - en
ID  - BUMI_2008_9_1_3_a17
ER  - 
%0 Journal Article
%A Kessel, Thiemo
%A Rivière, Tristan
%T Singular Bundles with Bounded $L^2$-Curvatures
%J Bollettino della Unione matematica italiana
%D 2008
%P 881-901
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a17/
%G en
%F BUMI_2008_9_1_3_a17
Kessel, Thiemo; Rivière, Tristan. Singular Bundles with Bounded $L^2$-Curvatures. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 3, pp. 881-901. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a17/