Singular Bundles with Bounded $L^2$-Curvatures
Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 3, pp. 881-901
We consider calculus of variations of the Yang-Mills functional in dimensions larger than the critical dimension 4. We explain how this naturally leads to a class of - a priori not well-defined - singular bundles including possibly "almost everywhere singular bundles". In order to overcome this difficulty, we suggest a suitable new framework, namely the notion of singular bundles with bounded $L^2$-curvatures.
@article{BUMI_2008_9_1_3_a17,
author = {Kessel, Thiemo and Rivi\`ere, Tristan},
title = {Singular {Bundles} with {Bounded} $L^2${-Curvatures}},
journal = {Bollettino della Unione matematica italiana},
pages = {881--901},
year = {2008},
volume = {Ser. 9, 1},
number = {3},
zbl = {1197.58005},
mrnumber = {2455351},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a17/}
}
Kessel, Thiemo; Rivière, Tristan. Singular Bundles with Bounded $L^2$-Curvatures. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 3, pp. 881-901. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a17/