Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2008_9_1_3_a16, author = {De Lellis, Camillo}, title = {Le equazioni di {Eulero} dal punto di vista delle inclusioni differenziali}, journal = {Bollettino della Unione matematica italiana}, pages = {873--879}, publisher = {mathdoc}, volume = {Ser. 9, 1}, number = {3}, year = {2008}, zbl = {1191.35212}, mrnumber = {2455350}, language = {it}, url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a16/} }
TY - JOUR AU - De Lellis, Camillo TI - Le equazioni di Eulero dal punto di vista delle inclusioni differenziali JO - Bollettino della Unione matematica italiana PY - 2008 SP - 873 EP - 879 VL - 1 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a16/ LA - it ID - BUMI_2008_9_1_3_a16 ER -
De Lellis, Camillo. Le equazioni di Eulero dal punto di vista delle inclusioni differenziali. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 3, pp. 873-879. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a16/
[1] On total differential inclusions, Rend. Sem. Mat. Univ. Padova, 92 (1994), 9-16. | fulltext EuDML | MR | Zbl
- ,[2] On the differential inclusion $x' \in [-1, +1]$, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 69 (1980), 1-2 (1981), 1-6. | MR | Zbl
,[3] Vorticity and turbulence, vol. 103 of Applied Mathematical Sciences, (Springer-Verlag, New York, 1994). | DOI | MR
,[4] General existence theorems for Hamilton-Jacobi equations in the scalar and vectorial cases, Acta Math., 178 (1997), 1-37. | DOI | MR | Zbl
- ,[5] Hyperbolic conservation laws in continuum physics, Vol. 325 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] (Springer-Verlag, Berlin, 2000). | DOI | MR | Zbl
,[6] The Euler equations as a differential inclusion, Preprint. To appear in Ann. of Math. (2007). | DOI | MR
- ,[7] On admissibility criteria for weak solutions of the Euler equations, Preprint (2008). | DOI | MR
- ,[8] Compensated compactness and general systems of conservation laws, Trans. Amer. Math. Soc., 292, 2 (1985), 383-420. | DOI | MR | Zbl
,[9] Concentrations in regularizations for 2-D incom- pressible flow, Comm. Pure Appl. Math., 40, 3 (1987), 301-345. | DOI | MR
- ,[10] Turbulence, Cambridge University Press, Cambridge (1995), The legacy of A. N. Kolmogorov. | MR
,[11] Deformations with finitely many gradients and stability of quasi-convex hulls, C. R. Acad. Sci. Paris Sér. I Math., 332, 3 (2001), 289-294. | DOI | MR | Zbl
,[12] Rigidity and Geometry of microstructures, Habilitation Thesis, University of Leipzig (2003). | Zbl
,[13] Studying nonlinear PDE by geometry in matrix space, in Geometric analysis and Nonlinear partial differential equations, S. Hildebrandt and H. Karcher, Eds. (Springer-Verlag, 2003), 347-395. | MR
- - ,[14] Vorticity and incompressible flow, Vol. 27 of Cambridge Texts in Applied Mathematics, Cambridge University Press (Cambridge, 2002). | MR
- ,[15] Convex integration for Lipschitz mappings and counter-examples to regularity, Ann. of Math. (2), 157 (2003), 715-742. | DOI | MR
- ,[16] An inviscid flow with compact support in space-time, J. Geom. Anal., 3, 4 (1993), 343-401. | DOI | MR | Zbl
,[17] On the nonuniqueness of weak solution of the Euler equation, Comm. Pure Appl. Math., 50, 12 (1997), 1261-1286. | DOI | MR | Zbl
,[18] Weak solutions with decreasing energy of incompressible Euler equations, Comm. Math. Phys., 210, 3 (2000), 541-603. | DOI | MR | Zbl
,[19] Nonlinear dispersive equations, vol. 106 of CBMS Regional Conference Series in Mathematics, Published for the Conference Board of the Mathematical Sciences, Washington, DC (2006), Local and global analysis. | DOI | MR
,[20] Compensated compactness and applications to partial differential equations. In Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, vol. 39 of Res. Notes in Math., Pitman (Boston, Mass., 1979), 136-212. | MR
,[21] The compensated compactness method applied to systems of conservation laws. In Systems of nonlinear partial differential equations (Oxford, 1982), vol. 111 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Reidel (Dordrecht, 1983), 263-285. | MR
,[22] Navier-Stokes equations, third ed., vol. 2 of Studies in Mathematics and its Applications, North-Holland Publishing Co. (Amsterdam, 1984). Theory and numerical analysis, With an appendix by F. Thomasset. | MR
,