Le equazioni di Eulero dal punto di vista delle inclusioni differenziali
Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 3, pp. 873-879
In a recent joint paper with L. Székelyhidi we have proposed a new point of view on weak solutions of the Euler equations, describing the motion of an ideal incompressible fluid in $\mathbb{R}^n$ with $n \geq 2$. We give a reformulation of the Euler equations as a differential inclusion, and in this way we obtain transparent proofs of several celebrated results of V. Scheffer and A. Shnirelman concerning the non-uniqueness of weak solutions and the existence of energy-decreasing solutions. Our results are stronger because they work in any dimension and yield bounded velocity and pressure.
@article{BUMI_2008_9_1_3_a16,
author = {De Lellis, Camillo},
title = {Le equazioni di {Eulero} dal punto di vista delle inclusioni differenziali},
journal = {Bollettino della Unione matematica italiana},
pages = {873--879},
year = {2008},
volume = {Ser. 9, 1},
number = {3},
zbl = {1191.35212},
mrnumber = {2455350},
language = {it},
url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a16/}
}
De Lellis, Camillo. Le equazioni di Eulero dal punto di vista delle inclusioni differenziali. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 3, pp. 873-879. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a16/