Le equazioni di Eulero dal punto di vista delle inclusioni differenziali
Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 3, pp. 873-879.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In a recent joint paper with L. Székelyhidi we have proposed a new point of view on weak solutions of the Euler equations, describing the motion of an ideal incompressible fluid in $\mathbb{R}^n$ with $n \geq 2$. We give a reformulation of the Euler equations as a differential inclusion, and in this way we obtain transparent proofs of several celebrated results of V. Scheffer and A. Shnirelman concerning the non-uniqueness of weak solutions and the existence of energy-decreasing solutions. Our results are stronger because they work in any dimension and yield bounded velocity and pressure.
@article{BUMI_2008_9_1_3_a16,
     author = {De Lellis, Camillo},
     title = {Le equazioni di {Eulero} dal punto di vista delle inclusioni differenziali},
     journal = {Bollettino della Unione matematica italiana},
     pages = {873--879},
     publisher = {mathdoc},
     volume = {Ser. 9, 1},
     number = {3},
     year = {2008},
     zbl = {1191.35212},
     mrnumber = {2455350},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a16/}
}
TY  - JOUR
AU  - De Lellis, Camillo
TI  - Le equazioni di Eulero dal punto di vista delle inclusioni differenziali
JO  - Bollettino della Unione matematica italiana
PY  - 2008
SP  - 873
EP  - 879
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a16/
LA  - it
ID  - BUMI_2008_9_1_3_a16
ER  - 
%0 Journal Article
%A De Lellis, Camillo
%T Le equazioni di Eulero dal punto di vista delle inclusioni differenziali
%J Bollettino della Unione matematica italiana
%D 2008
%P 873-879
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a16/
%G it
%F BUMI_2008_9_1_3_a16
De Lellis, Camillo. Le equazioni di Eulero dal punto di vista delle inclusioni differenziali. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 3, pp. 873-879. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a16/

[1] A. Bressan - F. Flores, On total differential inclusions, Rend. Sem. Mat. Univ. Padova, 92 (1994), 9-16. | fulltext EuDML | MR | Zbl

[2] A. Cellina, On the differential inclusion $x' \in [-1, +1]$, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 69 (1980), 1-2 (1981), 1-6. | MR | Zbl

[3] A. J. Chorin, Vorticity and turbulence, vol. 103 of Applied Mathematical Sciences, (Springer-Verlag, New York, 1994). | DOI | MR

[4] B. Dacorogna - P. Marcellini, General existence theorems for Hamilton-Jacobi equations in the scalar and vectorial cases, Acta Math., 178 (1997), 1-37. | DOI | MR | Zbl

[5] C. M. Dafermos, Hyperbolic conservation laws in continuum physics, Vol. 325 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] (Springer-Verlag, Berlin, 2000). | DOI | MR | Zbl

[6] C. De Lellis - L. Szekelyhidi Jr., The Euler equations as a differential inclusion, Preprint. To appear in Ann. of Math. (2007). | DOI | MR

[7] C. De Lellis - L. Szekelyhidi Jr., On admissibility criteria for weak solutions of the Euler equations, Preprint (2008). | DOI | MR

[8] R. J. Di Perna, Compensated compactness and general systems of conservation laws, Trans. Amer. Math. Soc., 292, 2 (1985), 383-420. | DOI | MR | Zbl

[9] R. J. Di Perna - A. J. Majda, Concentrations in regularizations for 2-D incom- pressible flow, Comm. Pure Appl. Math., 40, 3 (1987), 301-345. | DOI | MR

[10] U. Frisch, Turbulence, Cambridge University Press, Cambridge (1995), The legacy of A. N. Kolmogorov. | MR

[11] B. Kirchheim, Deformations with finitely many gradients and stability of quasi-convex hulls, C. R. Acad. Sci. Paris Sér. I Math., 332, 3 (2001), 289-294. | DOI | MR | Zbl

[12] B. Kirchheim, Rigidity and Geometry of microstructures, Habilitation Thesis, University of Leipzig (2003). | Zbl

[13] B. Kirchheim - S. Müller - V. Šverák, Studying nonlinear PDE by geometry in matrix space, in Geometric analysis and Nonlinear partial differential equations, S. Hildebrandt and H. Karcher, Eds. (Springer-Verlag, 2003), 347-395. | MR

[14] A. J. Majda - A. L. Bertozzi, Vorticity and incompressible flow, Vol. 27 of Cambridge Texts in Applied Mathematics, Cambridge University Press (Cambridge, 2002). | MR

[15] S. Müller - V. Šverák, Convex integration for Lipschitz mappings and counter-examples to regularity, Ann. of Math. (2), 157 (2003), 715-742. | DOI | MR

[16] V. Scheffer, An inviscid flow with compact support in space-time, J. Geom. Anal., 3, 4 (1993), 343-401. | DOI | MR | Zbl

[17] A. Shnirelman, On the nonuniqueness of weak solution of the Euler equation, Comm. Pure Appl. Math., 50, 12 (1997), 1261-1286. | DOI | MR | Zbl

[18] A. Shnirelman, Weak solutions with decreasing energy of incompressible Euler equations, Comm. Math. Phys., 210, 3 (2000), 541-603. | DOI | MR | Zbl

[19] T. Tao, Nonlinear dispersive equations, vol. 106 of CBMS Regional Conference Series in Mathematics, Published for the Conference Board of the Mathematical Sciences, Washington, DC (2006), Local and global analysis. | DOI | MR

[20] L. Tartar, Compensated compactness and applications to partial differential equations. In Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, vol. 39 of Res. Notes in Math., Pitman (Boston, Mass., 1979), 136-212. | MR

[21] L. Tartar, The compensated compactness method applied to systems of conservation laws. In Systems of nonlinear partial differential equations (Oxford, 1982), vol. 111 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Reidel (Dordrecht, 1983), 263-285. | MR

[22] R. Temam, Navier-Stokes equations, third ed., vol. 2 of Studies in Mathematics and its Applications, North-Holland Publishing Co. (Amsterdam, 1984). Theory and numerical analysis, With an appendix by F. Thomasset. | MR