The Martingale Problem in Hilbert Spaces
Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 3, pp. 839-855.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We consider an SPDE in a Hilbert space $H$ of the form $dX(t) = ( AX(t) + b(X(t)) ) \, dt + \sigma(X(t)) \, dW(t)$, $X(0) = x \in H$ and the corresponding transition semigroup $P_t f (x)= \mathbb{E}[ f(X(t, x)) ]$. We define the infinitesimal generator $\bar L$ of $P_t$ through the Laplace transform of $P_t$ as in [1]. Then we consider the differential operator $L\varphi = \frac{1}{2} \operatorname{Tr}[\sigma(x)\sigma^*(x)D^2\varphi] + \langle b(x), D\varphi \rangle$ defined on a suitable set $V$ of regular functions. Our main result is that if $V$ is a core for $\bar L$, then there exists a unique solution of the martingale problem defined in terms of $L$. Application to the Ornstein-Uhlenbeck equation and to some regular perturbation of it are given.
@article{BUMI_2008_9_1_3_a14,
     author = {Da Prato, Giuseppe and Tubaro, Luciano},
     title = {The {Martingale} {Problem} in {Hilbert} {Spaces}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {839--855},
     publisher = {mathdoc},
     volume = {Ser. 9, 1},
     number = {3},
     year = {2008},
     zbl = {1195.60089},
     mrnumber = {2455348},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a14/}
}
TY  - JOUR
AU  - Da Prato, Giuseppe
AU  - Tubaro, Luciano
TI  - The Martingale Problem in Hilbert Spaces
JO  - Bollettino della Unione matematica italiana
PY  - 2008
SP  - 839
EP  - 855
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a14/
LA  - en
ID  - BUMI_2008_9_1_3_a14
ER  - 
%0 Journal Article
%A Da Prato, Giuseppe
%A Tubaro, Luciano
%T The Martingale Problem in Hilbert Spaces
%J Bollettino della Unione matematica italiana
%D 2008
%P 839-855
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a14/
%G en
%F BUMI_2008_9_1_3_a14
Da Prato, Giuseppe; Tubaro, Luciano. The Martingale Problem in Hilbert Spaces. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 3, pp. 839-855. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a14/

[1] S. Cerrai, A Hille-Yosida theorem for weakly continuous semigroups. Semigroup Forum 49, no. 3, 349-367, 1994. | fulltext EuDML | DOI | MR | Zbl

[2] G. Da Prato - E. Sinestrari, Differential operators with non dense domain. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14, no. 2 (1987), 285-344. | fulltext EuDML | MR | Zbl

[3] G. Da Prato - L. Tubaro, Some results about dissipativity of Kolmogorov operators. Czechoslovak Mathematical Journal, 51, 126 (2001), 685-699. | fulltext EuDML | DOI | MR | Zbl

[4] G. Da Prato - J. Zabczyk, Stochastic equations in infinite dimensions. Encyclopedia of Mathematics and its Applications, 44. Cambridge University Press, Cambridge, 1992. | DOI | MR

[5] G. Da Prato - J. Zabczyk, Second Order Partial Differential Equations in Hilbert Spaces. London Mathematical Society, Lecture Notes, 293, Cambridge University Press, 2002. | DOI | MR | Zbl

[6] E.B. Davies, One parameter semigroups, Academic Press, 1980. | MR | Zbl

[7] E.B. Dynkin, Markov processes and semigroups of operators. Theory of Probability and its Appl., 1, no. 1 (1956), 22-33. | MR

[8] S.N. Ethier - T. Kurtz, Markov processes. Characterization and convergence, Wiley series in probability and mathematical statistics, 1986. | DOI | MR

[9] F. Flandoli - D. Gatarek, Martingale and stationary solutions for stochastic Navier-Stokes equations, Prob. Theory Relat. Fields, 102, (1995), 367-391. | DOI | MR | Zbl

[10] B. Goldys - M. Kocan, Diffusion semigroups in spaces of continuous functions with mixed topology. J. Diff. Equations, 173, (2001), 17-39. | DOI | MR | Zbl

[11] F. Kühnemund, A Hille-Yosida theorem for bi-continuous semigroups. Semigroup Forum, 67, no. 2 (2003), 205-225. | DOI | MR

[12] T.M. Liggett, Interacting particle systems. Fundamental Principles of Mathematical Sciences, 276. Springer-Verlag, New York, 1985. | DOI | MR | Zbl

[13] M. Metivier, Stochastic partial differential equations in infinite-dimensional spaces. Scuola Normale Superiore di Pisa, 1988. | MR | Zbl

[14] R. Mikulevicius - B. L. Rozovskii, Martingale problems for stochastic PDE's. Stochastic partial differential equations: six perspectives, 243-325, Math. Surveys Monogr., 64, Amer. Math. Soc., Providence, RI, 1999. | DOI | MR | Zbl

[15] E. Priola, On a class of Markov type semigroups in spaces of uniformly continuous and bounded functions. Studia Math., 136, no. 3 (1999), 271-295. | fulltext EuDML | DOI | MR | Zbl

[16] D. W. Stroock - S. R. S. Varadhan, Multidimensional Diffusion Processes, Springer-Verlag, 1979. | MR | Zbl

[17] M. Viot, Solutions faibles d'equations aux dérivées partielles stochastiques non linéaires. Thése de Doctorat d'État, 1976. | MR

[18] M. Yor, Existence et unicité de diffusions á valeurs dans un espace de Hilbert. Ann. Inst. H. Poincaré, 10 (1974), 55-88. | fulltext EuDML | MR | Zbl

[19] K. Yosida, Functional analysis, Springer-Verlag, 1965. | MR

[20] L. Zambotti, A new approach to existence and uniqueness for martingale problems in infinite dimensions. Probab. Th. Relat. Fields, 118 (2000), 147-168. | DOI | MR | Zbl