The Martingale Problem in Hilbert Spaces
Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 3, pp. 839-855
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
We consider an SPDE in a Hilbert space $H$ of the form $dX(t) = ( AX(t) + b(X(t)) ) \, dt + \sigma(X(t)) \, dW(t)$, $X(0) = x \in H$ and the corresponding transition semigroup $P_t f (x)= \mathbb{E}[ f(X(t, x)) ]$. We define the infinitesimal generator $\bar L$ of $P_t$ through the Laplace transform of $P_t$ as in [1]. Then we consider the differential operator $L\varphi = \frac{1}{2} \operatorname{Tr}[\sigma(x)\sigma^*(x)D^2\varphi] + \langle b(x), D\varphi \rangle$ defined on a suitable set $V$ of regular functions. Our main result is that if $V$ is a core for $\bar L$, then there exists a unique solution of the martingale problem defined in terms of $L$. Application to the Ornstein-Uhlenbeck equation and to some regular perturbation of it are given.
@article{BUMI_2008_9_1_3_a14,
author = {Da Prato, Giuseppe and Tubaro, Luciano},
title = {The {Martingale} {Problem} in {Hilbert} {Spaces}},
journal = {Bollettino della Unione matematica italiana},
pages = {839--855},
publisher = {mathdoc},
volume = {Ser. 9, 1},
number = {3},
year = {2008},
zbl = {1195.60089},
mrnumber = {2455348},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a14/}
}
TY - JOUR AU - Da Prato, Giuseppe AU - Tubaro, Luciano TI - The Martingale Problem in Hilbert Spaces JO - Bollettino della Unione matematica italiana PY - 2008 SP - 839 EP - 855 VL - 1 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a14/ LA - en ID - BUMI_2008_9_1_3_a14 ER -
Da Prato, Giuseppe; Tubaro, Luciano. The Martingale Problem in Hilbert Spaces. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 3, pp. 839-855. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a14/