Reaction-Diffusion Equations for Chemically Reacting Gas Mixtures
Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 3, pp. 805-817.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this paper we aim at describing the hydrodynamic limit of a mixture of chemically reacting gases. Starting from kinetic Boltzmann-type equations, we derive Grad's 13-moments equations for single species. Then, after scaling such equations in terms of a suitable Knudsen number, we apply an asymptotic Chapman-Enskog procedure in order to build up hydrodynamic equations of Navier-Stokes type.
@article{BUMI_2008_9_1_3_a12,
     author = {Bisi, Marzia},
     title = {Reaction-Diffusion {Equations} for {Chemically} {Reacting} {Gas} {Mixtures}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {805--817},
     publisher = {mathdoc},
     volume = {Ser. 9, 1},
     number = {3},
     year = {2008},
     zbl = {1196.35123},
     mrnumber = {2455346},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a12/}
}
TY  - JOUR
AU  - Bisi, Marzia
TI  - Reaction-Diffusion Equations for Chemically Reacting Gas Mixtures
JO  - Bollettino della Unione matematica italiana
PY  - 2008
SP  - 805
EP  - 817
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a12/
LA  - en
ID  - BUMI_2008_9_1_3_a12
ER  - 
%0 Journal Article
%A Bisi, Marzia
%T Reaction-Diffusion Equations for Chemically Reacting Gas Mixtures
%J Bollettino della Unione matematica italiana
%D 2008
%P 805-817
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a12/
%G en
%F BUMI_2008_9_1_3_a12
Bisi, Marzia. Reaction-Diffusion Equations for Chemically Reacting Gas Mixtures. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 3, pp. 805-817. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a12/

[1] M. Bisi - L. Desvillettes, From reactive Boltzmann equations to reaction-diffusion systems, J. Stat. Phys., 124 (2006), 881-912. | DOI | MR | Zbl

[2] M. Bisi - M. Groppi - G. Spiga, Grad's distribution functions in the kinetic equations for a chemical reaction, Continuum Mech. Thermodyn., 14 (2002), 207-222. | DOI | MR | Zbl

[3] M. Bisi - M. Groppi - G. Spiga, Fluid-dynamic equations for reacting gas mixtures, Appl. Math., 50 (2005), 43-62. | fulltext EuDML | DOI | MR | Zbl

[4] M. Bisi - M. Groppi - G. Spiga, Kinetic Modelling of Bimolecular Chemical Reactions, in "Kinetic Methods for Nonconservative and Reacting Systems", (G. Toscani Ed.), "Quaderni di Matematica" [Mathematics Series], Aracne Editrice, Roma, 16 (2005), 1-143. | MR | Zbl

[5] M. Bisi - G. Spiga, Diatomic gas diffusing in a background medium: kinetic approach and reaction-diffusion equations, Commun. Math. Sci., 4 (2006), 779-798. | MR | Zbl

[6] C. Cercignani, Rarefied Gas Dynamics. From Basic Concepts to Actual Calculations, Cambridge University Press, Cambridge (2000). | MR | Zbl

[7] S. Chapman - T. G. Cowling, The mathematical theory of non-uniform gases, Springer, New York (1994). | MR | Zbl

[8] A. De Masi - P. A. Ferrari - J. L. Lebowitz, Reaction-diffusion equations for interacting particle systems, J. Stat. Phys., 44 (1986), 589-644. | DOI | MR | Zbl

[9] L. Desvillettes - R. Monaco - F. Salvarani, A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions, Eur. J. Mech. B Fluids, 24 (2005), 219-236. | DOI | MR | Zbl

[10] V. Giovangigli, Multicomponent Flow Modeling, Birkhäuser, Boston (1999). | DOI | MR | Zbl

[11] M. Groppi - G. Spiga, Kinetic approach to chemical reactions and inelastic transitions in a rarefied gas, J. Math. Chem., 26 (2000), 197-219. | Zbl

[12] M. Groppi - G. Spiga, Kinetic theory of a chemically reacting gas with inelastic transitions, Trans. Th. Stat. Phys., 30 (2001), 305-324. | Zbl

[13] W. Koller - F. Schürrer, Conservative solution methods for extended Boltzmann equations, Riv. Mat. Univ. Parma, (6) 4* (2001), 109-169. | MR | Zbl

[14] J. Polewczak, A review of the kinetic modelings for non-reactive and reactive dense fluids, Riv. Mat. Univ. Parma, (6) 4* (2001), 23-55. | MR | Zbl

[15] I. Prigogine - E. Xhrouet, On the perturbation of Maxwell distribution function by chemical reactions in a gas, Physica, 15 (1949), 913-932. | Zbl

[16] A. Rossani - G. Spiga, A note on the kinetic theory of chemically reacting gases, Physica A, 272 (1999), 563-573. | DOI | MR

[17] B. Shizgal - M. Karplus, Non-equilibrium contributions to the rate of reaction. Perturbation of the velocity distribution function, J. Chem. Phys., 52 (1970), 4262- 4278. | DOI | MR

[18] R. Spigler - D. H. Zanette, Asymptotic analysis and reaction-diffusion approximation for BGK kinetic models of chemical processes in multispecies gas mixtures, J. Appl. Math. Phys. (ZAMP), 44 (1993), 812-827. | DOI | MR | Zbl

[19] D. H. Zanette, Linear and nonlinear diffusion and reaction-diffusion equations from discrete-velocity kinetic models, J. Phys. A: Math. Gen., 26 (1993), 5339-5349. | MR | Zbl