Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2008_9_1_3_a12, author = {Bisi, Marzia}, title = {Reaction-Diffusion {Equations} for {Chemically} {Reacting} {Gas} {Mixtures}}, journal = {Bollettino della Unione matematica italiana}, pages = {805--817}, publisher = {mathdoc}, volume = {Ser. 9, 1}, number = {3}, year = {2008}, zbl = {1196.35123}, mrnumber = {2455346}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a12/} }
Bisi, Marzia. Reaction-Diffusion Equations for Chemically Reacting Gas Mixtures. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 3, pp. 805-817. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a12/
[1] From reactive Boltzmann equations to reaction-diffusion systems, J. Stat. Phys., 124 (2006), 881-912. | DOI | MR | Zbl
- ,[2] Grad's distribution functions in the kinetic equations for a chemical reaction, Continuum Mech. Thermodyn., 14 (2002), 207-222. | DOI | MR | Zbl
- - ,[3] Fluid-dynamic equations for reacting gas mixtures, Appl. Math., 50 (2005), 43-62. | fulltext EuDML | DOI | MR | Zbl
- - ,[4] Kinetic Modelling of Bimolecular Chemical Reactions, in "Kinetic Methods for Nonconservative and Reacting Systems", (G. Toscani Ed.), "Quaderni di Matematica" [Mathematics Series], Aracne Editrice, Roma, 16 (2005), 1-143. | MR | Zbl
- - ,[5] Diatomic gas diffusing in a background medium: kinetic approach and reaction-diffusion equations, Commun. Math. Sci., 4 (2006), 779-798. | MR | Zbl
- ,[6] Rarefied Gas Dynamics. From Basic Concepts to Actual Calculations, Cambridge University Press, Cambridge (2000). | MR | Zbl
,[7] The mathematical theory of non-uniform gases, Springer, New York (1994). | MR | Zbl
- ,[8] Reaction-diffusion equations for interacting particle systems, J. Stat. Phys., 44 (1986), 589-644. | DOI | MR | Zbl
- - ,[9] A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions, Eur. J. Mech. B Fluids, 24 (2005), 219-236. | DOI | MR | Zbl
- - ,[10] Multicomponent Flow Modeling, Birkhäuser, Boston (1999). | DOI | MR | Zbl
,[11] Kinetic approach to chemical reactions and inelastic transitions in a rarefied gas, J. Math. Chem., 26 (2000), 197-219. | Zbl
- ,[12] Kinetic theory of a chemically reacting gas with inelastic transitions, Trans. Th. Stat. Phys., 30 (2001), 305-324. | Zbl
- ,[13] Conservative solution methods for extended Boltzmann equations, Riv. Mat. Univ. Parma, (6) 4* (2001), 109-169. | MR | Zbl
- ,[14] A review of the kinetic modelings for non-reactive and reactive dense fluids, Riv. Mat. Univ. Parma, (6) 4* (2001), 23-55. | MR | Zbl
,[15] On the perturbation of Maxwell distribution function by chemical reactions in a gas, Physica, 15 (1949), 913-932. | Zbl
- ,[16] A note on the kinetic theory of chemically reacting gases, Physica A, 272 (1999), 563-573. | DOI | MR
- ,[17] Non-equilibrium contributions to the rate of reaction. Perturbation of the velocity distribution function, J. Chem. Phys., 52 (1970), 4262- 4278. | DOI | MR
- ,[18] Asymptotic analysis and reaction-diffusion approximation for BGK kinetic models of chemical processes in multispecies gas mixtures, J. Appl. Math. Phys. (ZAMP), 44 (1993), 812-827. | DOI | MR | Zbl
- ,[19] Linear and nonlinear diffusion and reaction-diffusion equations from discrete-velocity kinetic models, J. Phys. A: Math. Gen., 26 (1993), 5339-5349. | MR | Zbl
,