Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2008_9_1_3_a11, author = {Vega, Luis and Visciglia, Nicola}, title = {A {Uniqueness} {Result} for {Solutions} to {Subcritical} {NLS}}, journal = {Bollettino della Unione matematica italiana}, pages = {791--803}, publisher = {mathdoc}, volume = {Ser. 9, 1}, number = {3}, year = {2008}, zbl = {1191.35259}, mrnumber = {2455345}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a11/} }
TY - JOUR AU - Vega, Luis AU - Visciglia, Nicola TI - A Uniqueness Result for Solutions to Subcritical NLS JO - Bollettino della Unione matematica italiana PY - 2008 SP - 791 EP - 803 VL - 1 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a11/ LA - en ID - BUMI_2008_9_1_3_a11 ER -
Vega, Luis; Visciglia, Nicola. A Uniqueness Result for Solutions to Subcritical NLS. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 3, pp. 791-803. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a11/
[1] Some dispersive estimates for Schrödinger equations with repulsive potentials, J. Funct. Anal., vol. 236 (2006), 1-24. | DOI | MR | Zbl
- - ,[2] Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, vol. 10, New York University Courant Institute of Mathematical Sciences, New York, 2003. | DOI | MR
,[3] Local smoothing properties of dispersive equations, J. Amer. Math. Soc., vol. 1 (1988), 413-439. | DOI | MR | Zbl
- ,[4] Endpoint Strichartz estimates, Amer. J. Math., vol. 120 (1998), 955-980. | MR | Zbl
- ,[5] Lemmes de moments, de moyenne et de dispersion, C.R.A.S., vol. 314 (1992), 801-806. | MR | Zbl
- ,[6] Regularity of solutions to the Schrödinger equation, Duke Math. J., vol. 55 (1987), 699-715. | DOI | MR | Zbl
,[7] Schrödinger equations: pointwise convergence to the initial data, Proc. Amer. Math. Soc., vol. 102 (1988), 874-878. | DOI | MR | Zbl
,[8] On the local smoothing for the free Schrödinger equation. Proc. Amer. Math. Soc., vol. 135 (2007), 119-128. | DOI | MR | Zbl
- ,[9] On the local smmothing for a class of conformally invariant Schrödinger equations. Indiana Univ. Math. J., vol. 56 (2007), 2265-2304. | DOI | MR | Zbl
- ,[10] Asymptotic lower bounds for a class of Schroedinger equations. Comm. Math. Phys., vol. 279 (2008), 429-453. | DOI | MR | Zbl
- ,