A Uniqueness Result for Solutions to Subcritical NLS
Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 3, pp. 791-803.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We extend in a nonlinear context previous results obtained in [8], [9], [10]. In particular we present a precised version of Morawetz type estimates and a uniqueness criterion for solutions to subcritical NLS.
@article{BUMI_2008_9_1_3_a11,
     author = {Vega, Luis and Visciglia, Nicola},
     title = {A {Uniqueness} {Result} for {Solutions} to {Subcritical} {NLS}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {791--803},
     publisher = {mathdoc},
     volume = {Ser. 9, 1},
     number = {3},
     year = {2008},
     zbl = {1191.35259},
     mrnumber = {2455345},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a11/}
}
TY  - JOUR
AU  - Vega, Luis
AU  - Visciglia, Nicola
TI  - A Uniqueness Result for Solutions to Subcritical NLS
JO  - Bollettino della Unione matematica italiana
PY  - 2008
SP  - 791
EP  - 803
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a11/
LA  - en
ID  - BUMI_2008_9_1_3_a11
ER  - 
%0 Journal Article
%A Vega, Luis
%A Visciglia, Nicola
%T A Uniqueness Result for Solutions to Subcritical NLS
%J Bollettino della Unione matematica italiana
%D 2008
%P 791-803
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a11/
%G en
%F BUMI_2008_9_1_3_a11
Vega, Luis; Visciglia, Nicola. A Uniqueness Result for Solutions to Subcritical NLS. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 3, pp. 791-803. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a11/

[1] J. A. Barcelo - A. Ruiz - L. Vega, Some dispersive estimates for Schrödinger equations with repulsive potentials, J. Funct. Anal., vol. 236 (2006), 1-24. | DOI | MR | Zbl

[2] T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, vol. 10, New York University Courant Institute of Mathematical Sciences, New York, 2003. | DOI | MR

[3] P. Costantin - J.C. Saut, Local smoothing properties of dispersive equations, J. Amer. Math. Soc., vol. 1 (1988), 413-439. | DOI | MR | Zbl

[4] M. Keel - T. Tao, Endpoint Strichartz estimates, Amer. J. Math., vol. 120 (1998), 955-980. | MR | Zbl

[5] P. L. Lions - B. Perthame, Lemmes de moments, de moyenne et de dispersion, C.R.A.S., vol. 314 (1992), 801-806. | MR | Zbl

[6] P. Sjolin, Regularity of solutions to the Schrödinger equation, Duke Math. J., vol. 55 (1987), 699-715. | DOI | MR | Zbl

[7] L. Vega, Schrödinger equations: pointwise convergence to the initial data, Proc. Amer. Math. Soc., vol. 102 (1988), 874-878. | DOI | MR | Zbl

[8] L. Vega - N. Visciglia, On the local smoothing for the free Schrödinger equation. Proc. Amer. Math. Soc., vol. 135 (2007), 119-128. | DOI | MR | Zbl

[9] L. Vega - N. Visciglia, On the local smmothing for a class of conformally invariant Schrödinger equations. Indiana Univ. Math. J., vol. 56 (2007), 2265-2304. | DOI | MR | Zbl

[10] L. Vega - N. Visciglia, Asymptotic lower bounds for a class of Schroedinger equations. Comm. Math. Phys., vol. 279 (2008), 429-453. | DOI | MR | Zbl