The Ordinary Differential Equation with non-Lipschitz Vector Fields
Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 2, pp. 333-348.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this note we survey some recent results on the well-posedness of the ordinary differential equation with non-Lipschitz vector fields. We introduce the notion of regular Lagrangian flow, which is the right concept of solution in this framework. We present two different approaches to the theory of regular Lagrangian flows. The first one is quite general and is based on the connection with the continuity equation, via the superposition principle. The second one exploits some quantitative a-priori estimates and provides stronger results in the case of Sobolev regularity of the vector field.
@article{BUMI_2008_9_1_2_a2,
     author = {Crippa, Gianluca},
     title = {The {Ordinary} {Differential} {Equation} with {non-Lipschitz} {Vector} {Fields}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {333--348},
     publisher = {mathdoc},
     volume = {Ser. 9, 1},
     number = {2},
     year = {2008},
     zbl = {1203.35162},
     mrnumber = {2424297},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_2_a2/}
}
TY  - JOUR
AU  - Crippa, Gianluca
TI  - The Ordinary Differential Equation with non-Lipschitz Vector Fields
JO  - Bollettino della Unione matematica italiana
PY  - 2008
SP  - 333
EP  - 348
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_2_a2/
LA  - en
ID  - BUMI_2008_9_1_2_a2
ER  - 
%0 Journal Article
%A Crippa, Gianluca
%T The Ordinary Differential Equation with non-Lipschitz Vector Fields
%J Bollettino della Unione matematica italiana
%D 2008
%P 333-348
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_2_a2/
%G en
%F BUMI_2008_9_1_2_a2
Crippa, Gianluca. The Ordinary Differential Equation with non-Lipschitz Vector Fields. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 2, pp. 333-348. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_2_a2/

[1] L. Ambrosio, Transport equation and Cauchy problem for BV vector fields. Invent. Math., 158 (2004), 227-260. | DOI | MR | Zbl

[2] L. Ambrosio, Transport equation and Cauchy problem for non-smooth vector fields. Lecture Notes in Mathematics ``Calculus of Variations and Non-Linear Partial Differential Equation'' (CIME Series, Cetraro, 2005) 1927, B. Dacorogna and P. Marcellini eds., 2-41, 2008. | DOI | MR

[3] L. Ambrosio - F. Bouchut - C. De Lellis, Well-posedness for a class of hyperbolic systems of conservation laws in several space dimensions. Comm. PDE, 29 (2004), 1635-1651. | DOI | MR | Zbl

[4] L. Ambrosio - G. Crippa, Existence, uniqueness, stability and differentiability properties of the flow associated to weakly differentiable vector fields. To appear in the series UMI Lecture Notes (available at http://cvgmt.sns.it). | DOI | MR

[5] L. Ambrosio - G. Crippa - S. Maniglia, Traces and fine properties of a BD class of vector fields and applications. Ann. Sci. Toulouse, XIV (4) (2005), 527-561. | fulltext EuDML | MR | Zbl

[6] L. Ambrosio - C. De Lellis, Existence of solutions for a class of hyperbolic systems of conservation laws in several space dimensions. International Mathematical Research Notices, 41 (2003), 2205-2220. | DOI | MR | Zbl

[7] L. Ambrosio - C. De Lellis - J. Mali, On the chain-rule for the divergence of BV like vector fields: applications, partial results, open problems. To appear in the forthcoming book by the AMS series in contemporary mathematics "Perspectives in Nonlinear Partial Differential Equations: in honor of Haim Brezis" (available at http://cvgmt.sns.it). | DOI | MR

[8] L. Ambrosio - N. Fusco - D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs, 2000. | MR | Zbl

[9] L. Ambrosio - N. Gigli - G. Savaré, Gradient flows in metric spaces and in the Wasserstein space of probability measures. Lectures in Mathematics, ETH Zurich, Birkhäuser, 2005. | MR

[10] L. Ambrosio - M. Lecumberry - S. Maniglia, Lipschitz regularity and approximate differentiability of the DiPerna-Lions flow. Rend. Sem. Mat. Univ. Padova, 114 (2005), 29-50. | fulltext EuDML | MR | Zbl

[11] L. Ambrosio - J. Mali, Very weak notions of differentiability. Proceedings of the Royal Society of Edinburgh, 137A (2007), 447-455. | DOI | MR | Zbl

[12] F. Bouchut, Renormalized solutions to the Vlasov equation with coefficients of bounded variation. Arch. Rational Mech. Anal., 157 (2001), 75-90. | DOI | MR | Zbl

[13] F. Bouchut - G. Crippa, Uniqueness, Renormalization, and Smooth Approximations for Linear Transport Equations. SIAM J. Math. Anal., 38 (2006), 1316- 1328. | DOI | MR | Zbl

[14] A. Bressan, A lemma and a conjecture on the cost of rearrangements. Rend. Sem. Mat. Univ. Padova, 110 (2003), 97-102. | fulltext EuDML | MR | Zbl

[15] A. Bressan, An ill posed Cauchy problem for a hyperbolic system in two space dimensions. Rend. Sem. Mat. Univ. Padova, 110 (2003), 103-117. | fulltext EuDML | MR | Zbl

[16] F. Colombini - G. Crippa - J. Rauch, A note on two-dimensional transport with bounded divergence. Comm. PDE, 31 (2006), 1109-1115. | DOI | MR | Zbl

[17] F. Colombini - N. Lerner, Uniqueness of $L^\infty$ solutions for a class of conormal BV vector fields. Contemp. Math. 368 (2005), 133-156. | DOI | MR | Zbl

[18] G. Crippa, Equazione del trasporto e problema di Cauchy per campi vettoriali debolmente differenziabili. Tesi di Laurea, Università di Pisa, 2006 (available at http://cvgmt.sns.it).

[19] G. Crippa, The flow associated to weakly differentiable vector fields. PhD Thesis, Scuola Normale Superiore and Universitat Zurich, 2007 (available at http:// cvgmt.sns.it). | MR | Zbl

[20] G. Crippa - C. De Lellis, Oscillatory solutions to transport equations. Indiana Univ. Math. J., 55 (2006), 1-13. | DOI | MR | Zbl

[21] G. Crippa - C. De Lellis, Estimates and regularity results for the DiPerna-Lions flow. Preprint, 2006 (available at http://cvgmt.sns.it). J. Reine Angew. Math., in press. | DOI | MR | Zbl

[22] G. Crippa - C. De Lellis, Regularity and compactness for the DiPerna-Lions flow. Hyperbolic Problems: Theory, Numerics, Applications. S. Benzoni-Gavage and D. Serre eds. (2008). | DOI | MR | Zbl

[23] C. De Lellis, Notes on hyperbolic systems of conservation laws and transport equations. Handbook of Differential Equations: Evolutionary Equations, vol. III. Edited by C. M. Dafermos and E. Feireisl. Elsevier/North-Holland, Amsterdam, 2006. | DOI | MR

[24] C. De Lellis, Ordinary differential equations with rough coefficients and the renormalization theorem of Ambrosio (d'après Ambrosio, DiPerna, Lions). Séminaire Bourbaki, vol. 2006/2007, n. 972. | MR | Zbl

[25] N. Depauw, Non unicité des solutions bornées pour un champ de vecteurs BV en dehors d'un hyperplan. C.R. Math. Sci. Acad. Paris, 337 (2003), 249-252. | DOI | MR | Zbl

[26] R. J. Diperna - P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math., 98 (1989), 511-547. | fulltext EuDML | DOI | MR | Zbl

[27] R. J. Diperna - P.-L. Lions, On the Cauchy problem for the Boltzmann equation: global existence and weak stability. Ann. of Math., 130 (1989), 312-366. | DOI | MR | Zbl

[28] B. L. Keyfitz - H. C. Kranzer, A system of nonstrictly hyperbolic conservation laws arising in elasticity theory. Arch. Rational Mech. Anal., 72 (1980), 219-241. | DOI | MR | Zbl

[29] S. N. Kruzkov, First order quasilinear equations with several independent variables. Mat. Sb. (N.S.), 81 (1970), 228-255. | MR

[30] C. Le Bris - P.-L. Lions, Renormalized solutions of some transport equations with partially $W^{1,1}$ velocities and applications. Annali di Matematica, 183 (2003), 97-130. | DOI | MR | Zbl

[31] E. M. Stein, Singular integrals and differentiability properties of functions. Princeton University Press, 1970. | MR | Zbl