Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2008_9_1_2_a2, author = {Crippa, Gianluca}, title = {The {Ordinary} {Differential} {Equation} with {non-Lipschitz} {Vector} {Fields}}, journal = {Bollettino della Unione matematica italiana}, pages = {333--348}, publisher = {mathdoc}, volume = {Ser. 9, 1}, number = {2}, year = {2008}, zbl = {1203.35162}, mrnumber = {2424297}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_2_a2/} }
TY - JOUR AU - Crippa, Gianluca TI - The Ordinary Differential Equation with non-Lipschitz Vector Fields JO - Bollettino della Unione matematica italiana PY - 2008 SP - 333 EP - 348 VL - 1 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_2_a2/ LA - en ID - BUMI_2008_9_1_2_a2 ER -
Crippa, Gianluca. The Ordinary Differential Equation with non-Lipschitz Vector Fields. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 2, pp. 333-348. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_2_a2/
[1] Transport equation and Cauchy problem for BV vector fields. Invent. Math., 158 (2004), 227-260. | DOI | MR | Zbl
,[2] Transport equation and Cauchy problem for non-smooth vector fields. Lecture Notes in Mathematics ``Calculus of Variations and Non-Linear Partial Differential Equation'' (CIME Series, Cetraro, 2005) 1927, B. Dacorogna and P. Marcellini eds., 2-41, 2008. | DOI | MR
,[3] Well-posedness for a class of hyperbolic systems of conservation laws in several space dimensions. Comm. PDE, 29 (2004), 1635-1651. | DOI | MR | Zbl
- - ,[4] Existence, uniqueness, stability and differentiability properties of the flow associated to weakly differentiable vector fields. To appear in the series UMI Lecture Notes (available at http://cvgmt.sns.it). | DOI | MR
- ,[5] Traces and fine properties of a BD class of vector fields and applications. Ann. Sci. Toulouse, XIV (4) (2005), 527-561. | fulltext EuDML | MR | Zbl
- - ,[6] Existence of solutions for a class of hyperbolic systems of conservation laws in several space dimensions. International Mathematical Research Notices, 41 (2003), 2205-2220. | DOI | MR | Zbl
- ,[7] On the chain-rule for the divergence of BV like vector fields: applications, partial results, open problems. To appear in the forthcoming book by the AMS series in contemporary mathematics "Perspectives in Nonlinear Partial Differential Equations: in honor of Haim Brezis" (available at http://cvgmt.sns.it). | DOI | MR
- - ,[8] Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs, 2000. | MR | Zbl
- - ,[9] Gradient flows in metric spaces and in the Wasserstein space of probability measures. Lectures in Mathematics, ETH Zurich, Birkhäuser, 2005. | MR
- - ,[10] Lipschitz regularity and approximate differentiability of the DiPerna-Lions flow. Rend. Sem. Mat. Univ. Padova, 114 (2005), 29-50. | fulltext EuDML | MR | Zbl
- - ,[11] Very weak notions of differentiability. Proceedings of the Royal Society of Edinburgh, 137A (2007), 447-455. | DOI | MR | Zbl
- ,[12] Renormalized solutions to the Vlasov equation with coefficients of bounded variation. Arch. Rational Mech. Anal., 157 (2001), 75-90. | DOI | MR | Zbl
,[13] Uniqueness, Renormalization, and Smooth Approximations for Linear Transport Equations. SIAM J. Math. Anal., 38 (2006), 1316- 1328. | DOI | MR | Zbl
- ,[14] A lemma and a conjecture on the cost of rearrangements. Rend. Sem. Mat. Univ. Padova, 110 (2003), 97-102. | fulltext EuDML | MR | Zbl
,[15] An ill posed Cauchy problem for a hyperbolic system in two space dimensions. Rend. Sem. Mat. Univ. Padova, 110 (2003), 103-117. | fulltext EuDML | MR | Zbl
,[16] A note on two-dimensional transport with bounded divergence. Comm. PDE, 31 (2006), 1109-1115. | DOI | MR | Zbl
- - ,[17] Uniqueness of $L^\infty$ solutions for a class of conormal BV vector fields. Contemp. Math. 368 (2005), 133-156. | DOI | MR | Zbl
- ,[18] Equazione del trasporto e problema di Cauchy per campi vettoriali debolmente differenziabili. Tesi di Laurea, Università di Pisa, 2006 (available at http://cvgmt.sns.it).
,[19] The flow associated to weakly differentiable vector fields. PhD Thesis, Scuola Normale Superiore and Universitat Zurich, 2007 (available at http:// cvgmt.sns.it). | MR | Zbl
,[20] Oscillatory solutions to transport equations. Indiana Univ. Math. J., 55 (2006), 1-13. | DOI | MR | Zbl
- ,[21] Estimates and regularity results for the DiPerna-Lions flow. Preprint, 2006 (available at http://cvgmt.sns.it). J. Reine Angew. Math., in press. | DOI | MR | Zbl
- ,[22] Regularity and compactness for the DiPerna-Lions flow. Hyperbolic Problems: Theory, Numerics, Applications. S. Benzoni-Gavage and D. Serre eds. (2008). | DOI | MR | Zbl
- ,[23] Notes on hyperbolic systems of conservation laws and transport equations. Handbook of Differential Equations: Evolutionary Equations, vol. III. Edited by C. M. Dafermos and E. Feireisl. Elsevier/North-Holland, Amsterdam, 2006. | DOI | MR
,[24] Ordinary differential equations with rough coefficients and the renormalization theorem of Ambrosio (d'après Ambrosio, DiPerna, Lions). Séminaire Bourbaki, vol. 2006/2007, n. 972. | MR | Zbl
,[25] Non unicité des solutions bornées pour un champ de vecteurs BV en dehors d'un hyperplan. C.R. Math. Sci. Acad. Paris, 337 (2003), 249-252. | DOI | MR | Zbl
,[26] Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math., 98 (1989), 511-547. | fulltext EuDML | DOI | MR | Zbl
- ,[27] On the Cauchy problem for the Boltzmann equation: global existence and weak stability. Ann. of Math., 130 (1989), 312-366. | DOI | MR | Zbl
- ,[28] A system of nonstrictly hyperbolic conservation laws arising in elasticity theory. Arch. Rational Mech. Anal., 72 (1980), 219-241. | DOI | MR | Zbl
- ,[29] First order quasilinear equations with several independent variables. Mat. Sb. (N.S.), 81 (1970), 228-255. | MR
,[30] Renormalized solutions of some transport equations with partially $W^{1,1}$ velocities and applications. Annali di Matematica, 183 (2003), 97-130. | DOI | MR | Zbl
- ,[31] Singular integrals and differentiability properties of functions. Princeton University Press, 1970. | MR | Zbl
,