Comparison Principles for Subelliptic Equations of Monge-Ampère Type
Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 2, pp. 489-495.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We present two comparison principles for viscosity sub- and supersolutions of Monge-Ampére-type equations associated to a family of vector fields. In particular, we obtain the uniqueness of a viscosity solution to the Dirichlet problem for the equation of prescribed horizontal Gauss curvature in a Carnot group.
@article{BUMI_2008_9_1_2_a10,
     author = {Bardi, Martino and Mannucci, Paola},
     title = {Comparison {Principles} for {Subelliptic} {Equations} of {Monge-Amp\`ere} {Type}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {489--495},
     publisher = {mathdoc},
     volume = {Ser. 9, 1},
     number = {2},
     year = {2008},
     zbl = {1203.35081},
     mrnumber = {2424306},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_2_a10/}
}
TY  - JOUR
AU  - Bardi, Martino
AU  - Mannucci, Paola
TI  - Comparison Principles for Subelliptic Equations of Monge-Ampère Type
JO  - Bollettino della Unione matematica italiana
PY  - 2008
SP  - 489
EP  - 495
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_2_a10/
LA  - en
ID  - BUMI_2008_9_1_2_a10
ER  - 
%0 Journal Article
%A Bardi, Martino
%A Mannucci, Paola
%T Comparison Principles for Subelliptic Equations of Monge-Ampère Type
%J Bollettino della Unione matematica italiana
%D 2008
%P 489-495
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_2_a10/
%G en
%F BUMI_2008_9_1_2_a10
Bardi, Martino; Mannucci, Paola. Comparison Principles for Subelliptic Equations of Monge-Ampère Type. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 2, pp. 489-495. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_2_a10/

[1] M. Bardi - P. Mannucci, On the Dirichlet problem for non-totally degenerate fully nonlinear elliptic equations, Commun. Pure Applied Anal., 5 (2006), 709-731. | DOI | MR | Zbl

[2] M. Bardi - P. Mannucci, Comparison principles for equations of Monge-Ampére type associated to vector fields, to appear. | MR | Zbl

[3] F. H. Beatrous - T.J. Bieske - J. J. Manfredi, The maximum principle for vector fields, Contemp. Math. 370, Amer. Math. Soc., Providence, RI, 2005, 1-9. | DOI | MR | Zbl

[4] A. BELLAICHE - J. J. RISLER eds, Sub-Riemannian geometry, Progress in Mathematics, 144, Birkhäuser Verlag, Basel, 1996. | DOI | MR

[5] T. Bieske, On infinite harmonic functions on the Heisenberg group, Comm. Partial Differential Equations, 27 (2002), 727-761. | DOI | MR | Zbl

[6] T. Bieske, Viscosity solutions on Grushin-type planes, Illinois J. Math., 46 (2002), 893-911. | MR | Zbl

[7] A. Bonfiglioli - E. Lanconelli - F. Uguzzoni, Stratified Lie Groups and Potential Theory for Their Sub-Laplacians, Springer, Berlin 2007. | MR | Zbl

[8] L. A. Caffarelli, The Monge Ampere equation and Optimal Transportation, Contemp. Math., 353 (2004), Amer. Math. Soc., Providence, RI, 2004, 43-52. | DOI | MR | Zbl

[9] M. G. Crandall - H. Ishii - P. L. Lions, User's guide to viscosity solutions of second-order partial differential equations, Bull. Amer. Math. Soc., 27 (1992), 1-67. | DOI | MR | Zbl

[10] D. Danielli - N. Garofalo - D. M. Nhieu, Notions of convexity in Carnot groups, Comm. Anal. Geom., 11 (2003), 263-341. | DOI | MR | Zbl

[11] N. Garofalo - F. Tournier, New properties of convex functions in the Heisenberg group, Trans. Amer. Math. Soc., 358 (2006), 2011-2055. | DOI | MR | Zbl

[12] C. E. Gutiérrez - A. Montanari, Maximum and comparison principles for convex functions on the Heisenberg group, Comm. Partial Differential Equations, 29 (2004), 1305-1334. | DOI | MR | Zbl

[13] H. Ishii - P. L. Lions, Viscosity solutions of fully nonlinear second-order elliptic partial differential equations, J. Diff. Eq., 83 (1990), 26-78. | DOI | MR | Zbl

[14] P. Juutinen - G. Lu - J. Manfredi - B. Stroffolini, Convex functions in Carnot groups, Rev. Mat. Iberoamericana, 23 (2007), 191-200. | fulltext EuDML | DOI | MR | Zbl

[15] G. Lu - J. Manfredi - B. Stroffolini, Convex functions on the Heisenberg Group, Calc. Var. Partial Differential Equations, 19 (2004), 1-22. | DOI | MR | Zbl

[16] V. Magnani, Lipschitz continuity, Aleksandrov theorem and characterizations for H-convex functions, Math. Ann., 334 (2006), 199-233. | DOI | MR | Zbl

[17] J. J. Manfredi, Nonlinear Subelliptic Equations on Carnot Groups, Third School on Analysis and Geometry in Metric Spaces, Trento, 2003, available at http://www.pitt.edu/ manfredi/

[18] M. Rickly, First order regularity of convex functions on Carnot groups, J. Geom. Anal., 16 (2006), 679-702. | DOI | MR | Zbl

[19] N. S. Trudinger, Recent developments in elliptic partial differential equations of Monge-Ampére type, International Congress of Mathematicians. Vol. III, 291-301, Eur. Math. Soc., Zurich, 2006. | MR | Zbl