Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2008_9_1_2_a10, author = {Bardi, Martino and Mannucci, Paola}, title = {Comparison {Principles} for {Subelliptic} {Equations} of {Monge-Amp\`ere} {Type}}, journal = {Bollettino della Unione matematica italiana}, pages = {489--495}, publisher = {mathdoc}, volume = {Ser. 9, 1}, number = {2}, year = {2008}, zbl = {1203.35081}, mrnumber = {2424306}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_2_a10/} }
TY - JOUR AU - Bardi, Martino AU - Mannucci, Paola TI - Comparison Principles for Subelliptic Equations of Monge-Ampère Type JO - Bollettino della Unione matematica italiana PY - 2008 SP - 489 EP - 495 VL - 1 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_2_a10/ LA - en ID - BUMI_2008_9_1_2_a10 ER -
Bardi, Martino; Mannucci, Paola. Comparison Principles for Subelliptic Equations of Monge-Ampère Type. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 2, pp. 489-495. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_2_a10/
[1] On the Dirichlet problem for non-totally degenerate fully nonlinear elliptic equations, Commun. Pure Applied Anal., 5 (2006), 709-731. | DOI | MR | Zbl
- ,[2] Comparison principles for equations of Monge-Ampére type associated to vector fields, to appear. | MR | Zbl
- ,[3] The maximum principle for vector fields, Contemp. Math. 370, Amer. Math. Soc., Providence, RI, 2005, 1-9. | DOI | MR | Zbl
- - ,[4] A. BELLAICHE - J. J. RISLER eds, Sub-Riemannian geometry, Progress in Mathematics, 144, Birkhäuser Verlag, Basel, 1996. | DOI | MR
[5] On infinite harmonic functions on the Heisenberg group, Comm. Partial Differential Equations, 27 (2002), 727-761. | DOI | MR | Zbl
,[6] Viscosity solutions on Grushin-type planes, Illinois J. Math., 46 (2002), 893-911. | MR | Zbl
,[7] Stratified Lie Groups and Potential Theory for Their Sub-Laplacians, Springer, Berlin 2007. | MR | Zbl
- - ,[8] The Monge Ampere equation and Optimal Transportation, Contemp. Math., 353 (2004), Amer. Math. Soc., Providence, RI, 2004, 43-52. | DOI | MR | Zbl
,[9] User's guide to viscosity solutions of second-order partial differential equations, Bull. Amer. Math. Soc., 27 (1992), 1-67. | DOI | MR | Zbl
- - ,[10] Notions of convexity in Carnot groups, Comm. Anal. Geom., 11 (2003), 263-341. | DOI | MR | Zbl
- - ,[11] New properties of convex functions in the Heisenberg group, Trans. Amer. Math. Soc., 358 (2006), 2011-2055. | DOI | MR | Zbl
- ,[12] Maximum and comparison principles for convex functions on the Heisenberg group, Comm. Partial Differential Equations, 29 (2004), 1305-1334. | DOI | MR | Zbl
- ,[13] Viscosity solutions of fully nonlinear second-order elliptic partial differential equations, J. Diff. Eq., 83 (1990), 26-78. | DOI | MR | Zbl
- ,[14] Convex functions in Carnot groups, Rev. Mat. Iberoamericana, 23 (2007), 191-200. | fulltext EuDML | DOI | MR | Zbl
- - - ,[15] Convex functions on the Heisenberg Group, Calc. Var. Partial Differential Equations, 19 (2004), 1-22. | DOI | MR | Zbl
- - ,[16] Lipschitz continuity, Aleksandrov theorem and characterizations for H-convex functions, Math. Ann., 334 (2006), 199-233. | DOI | MR | Zbl
,[17] Nonlinear Subelliptic Equations on Carnot Groups, Third School on Analysis and Geometry in Metric Spaces, Trento, 2003, available at http://www.pitt.edu/ manfredi/
,[18] First order regularity of convex functions on Carnot groups, J. Geom. Anal., 16 (2006), 679-702. | DOI | MR | Zbl
,[19] Recent developments in elliptic partial differential equations of Monge-Ampére type, International Congress of Mathematicians. Vol. III, 291-301, Eur. Math. Soc., Zurich, 2006. | MR | Zbl
,