Gradient Flows in Metric Spaces and in the Spaces of Probability Measures, and Applications to Fokker-Planck Equations with Respect to Log-Concave Measures
Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 1, pp. 223-240.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

A survey on the main results of the theory of gradient flows in metric spaces and in the Wasserstein space of probability measures obtained in [3] and [4], is presented.
@article{BUMI_2008_9_1_1_a8,
     author = {Ambrosio, Luigi},
     title = {Gradient {Flows} in {Metric} {Spaces} and in the {Spaces} of {Probability} {Measures,} and {Applications} to {Fokker-Planck} {Equations} with {Respect} to {Log-Concave} {Measures}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {223--240},
     publisher = {mathdoc},
     volume = {Ser. 9, 1},
     number = {1},
     year = {2008},
     zbl = {1210.28005},
     mrnumber = {2388005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a8/}
}
TY  - JOUR
AU  - Ambrosio, Luigi
TI  - Gradient Flows in Metric Spaces and in the Spaces of Probability Measures, and Applications to Fokker-Planck Equations with Respect to Log-Concave Measures
JO  - Bollettino della Unione matematica italiana
PY  - 2008
SP  - 223
EP  - 240
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a8/
LA  - en
ID  - BUMI_2008_9_1_1_a8
ER  - 
%0 Journal Article
%A Ambrosio, Luigi
%T Gradient Flows in Metric Spaces and in the Spaces of Probability Measures, and Applications to Fokker-Planck Equations with Respect to Log-Concave Measures
%J Bollettino della Unione matematica italiana
%D 2008
%P 223-240
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a8/
%G en
%F BUMI_2008_9_1_1_a8
Ambrosio, Luigi. Gradient Flows in Metric Spaces and in the Spaces of Probability Measures, and Applications to Fokker-Planck Equations with Respect to Log-Concave Measures. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 1, pp. 223-240. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a8/

[1] S. Albeverio - S. Kusuoka, Maximality of infinite-dimensional Dirichlet forms and Hegh-Krohn's model of quantum fields. Ideas and methods in quantum and statistical physics (Oslo, 1988), Cambridge Univ. Press, Cambridge (2002), 301-330. | MR | Zbl

[2] L. Ambrosio - N. Fusco - D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press (2000). | MR | Zbl

[3] L. Ambrosio - N. Gigli - G. Savaré, Gradient flows in metric spaces and in the spaces of probability measures. Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, (2005). | MR | Zbl

[4] L. Ambrosio - G. Savaré, Gradient flows in spaces of probability measures. Handbook of Differential Equations. Evolutionary equations III, North Holland 2007. | DOI | MR

[5] L. Ambrosio - G. Savaré - L. Zambotti, Existence and Stability for Fokker-Planck equations with log-concave reference measure. (2007), Submitted paper. | DOI | MR

[6] P. Bénilan, Solutions intégrales d'équations d'évolution dans un espace de Banach. C.R.Acad.Sci. Paris Sér. A-B, 274, (1972). | MR | Zbl

[7] V. I. Bogachev, Gaussian measures. Mathematical Surveys and Monographs, 62, AMS (1998). | DOI | MR

[8] C. Borell, Convex set functions in d-space. Period. Math. Hungar., 6 (1975), 111-136. | DOI | MR | Zbl

[9] H. Brézis, Opérateurs maximaux monotones. North-Holland, Amsterdam, (1973).

[10] J. A. Carrillo - R. Mccann - C. Villani, Contraction in the 2-Wasserstein length space and thermalization of granular media. Arch. Rational Mech. Anal., 179 (2006), 217-263. | DOI | MR | Zbl

[11] E. Cepa, Problème de Skorohod multivoque, Annals of Probability, 26 no. 2 (1998), 500-532. | DOI | MR | Zbl

[12] A. Debussche - L. Zambotti, Conservative Stochastic Cahn-Hilliard equation with reflection, to appear in Annals of Probability (2007). | DOI | MR | Zbl

[13] G. Dal Maso, An introduction to $\Gamma$-convergence. Birkhauser (1993). | DOI | MR | Zbl

[14] G. Da Prato - J. Zabczyk, Second order partial differential equations in Hilbert spaces, London Mathematical Society Lecture Notes Series, 293, Cambridge University Press (2002). | DOI | MR | Zbl

[15] G. Da Prato - J. Zabczyk, Ergodicity for Infinite Dimensional Systems, London Mathematical Society Lecture Notes, n.229, Cambridge University Press (1996). | DOI | MR | Zbl

[16] E. De Giorgi - A. Marino and M. Tosques, Problems of evolution in metric spaces and maximal decreasing curves. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., (8) 68 (1980), 180-187. | fulltext bdim | MR | Zbl

[17] S. Fang, Wasserstein space over the Wiener space. Preprint, 2007.

[18] D. Feyel - A. S. Ustunel, Monge-Kantorovitch measure transportation and Monge-Ampère equation on Wiener space, Probab. Theory Relat. Fields, 128 (2004), 347-385. | DOI | MR | Zbl

[19] M. Fukushima - Y. Oshima - M. Takeda, Dirichlet Forms and Symmetric Markov Processes. Walter de Gruyter, Berlin-New York (1994). | DOI | MR | Zbl

[20] T. Funaki, Stochastic Interface Models. In: Lectures on Probability Theory and Statistics, Ecole d'Eté de Probabilités de Saint-Flour XXXIII - 2003 (ed. J. Picard), 103-274, Lect. Notes Math., 1869, Springer (2005). | DOI | MR

[21] T. Funaki - S. Olla, Fluctuations for $\nabla\phi$ interface model on a wall. Stoch. Proc. and Appl, 94 (2001), 1-27. | DOI | MR | Zbl

[22] T. Funaki - H. Spohn, Motion by mean curvature from the Ginzburg-Landau $\nabla\phi$ interface model. Comm. Math. Phys. 185 (1997), 1-36. | DOI | MR | Zbl

[23] G. Giacomin - S. Olla - H. Spohn, Equilibrium fluctuations for $\nabla\phi$ interface model, Ann. Probab. 29 (2001), 1138-1172. | DOI | MR | Zbl

[24] F. John, Partial differential equations. Springer (4th. ed.) (1970). | MR

[25] R. Jordan - D. Kinderlehrer - F. Otto, The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29 (1998), 1-17. | DOI | MR | Zbl

[26] A. Lytchak, Open map theorem for metric spaces. St. Petersburg Math. J., 17 (2006), 477-491. | DOI | MR | Zbl

[27] Z. M. Ma - M. Rockner, Introduction to the Theory of (Non-Symmetric) Dirichlet Forms. Universitext, Springer-Verlag (1992). | DOI | MR | Zbl

[28] D. Nualart - E. Pardoux, White noise driven quasilinear SPDEs with reflection, Prob. Theory and Rel. Fields, 93 (1992), 77-89. | DOI | MR | Zbl

[29] R. J. Mccann, A convexity principle for interacting gases. Adv. Math., 128, (1997) 153-179. | DOI | MR | Zbl

[30] F. Otto, The geometry of dissipative evolution equations: the porous medium equation. Comm. PDE, 26 (2001), 101-174. | DOI | MR | Zbl

[31] G. Perelman and A. Petrunin, Quasigeodesics and gradient curves in Alexandrov spaces. Unpublished preprint (1994). | MR

[32] D. Revuz - M. Yor, Continuous Martingales and Brownian Motion, Springer Verlag (1991). | DOI | MR | Zbl

[33] G. Savaré, Gradient flows and diffusion semigroups in metric spaces and lower curvature bounds. CRAS note (2007), in press. | DOI | MR

[34] S. Sheffield, Random Surfaces, Asterisque, No. 304 (2005). | MR

[35] A. V. Skorohod, Stochastic equations for diffusions in a bounded region, Theory Probab. Appl. 6 (1961), 264-274.

[36] H. Spohn, Interface motion in models with stochastic dynamics, J. Stat. Phys. 71 (1993), 1081-1132. | DOI | MR | Zbl

[37] D. W. Stroock - S. R. S. Varadhan, Multidimensional diffusion processes. Springer Verlag, second ed (1997). | MR | Zbl

[38] H. Tanaka, Stochastic differential equations with reflecting boundary condition in convex regions, Hiroshima Math. J. 9 (1979), 163-177. | MR | Zbl

[39] C. Villani, Topics in optimal transportation. Graduate Studies in Mathematics, 58 (2003), AMS. | DOI | MR | Zbl

[40] L. Zambotti, Integration by parts formulae on convex sets of paths and applications to SPDEs with reflection, Probab. Theory Related Fields, 123 no. 4 (2002), 579-600. | DOI | MR | Zbl

[41] L. Zambotti, Integration by parts on $\delta$-Bessel Bridges, $\delta > 3$, and related SPDEs, Annals of Probability, 31 no. 1 (2003), 323-348. | DOI | MR | Zbl

[42] L. Zambotti, Fluctuations for a $\nabla\phi$interface model with repulsion from a wall, Prob. Theory and Rel. Fields, 129 no. 3 (2004), 315-339. | DOI | MR | Zbl

[43] L. Zambotti, Convergence of approximations of monotone gradient systems, Journal of Evolution Equations, 6 no. 4 (2006), 601-619. | DOI | MR | Zbl