Gradient Flows in Metric Spaces and in the Spaces of Probability Measures, and Applications to Fokker-Planck Equations with Respect to Log-Concave Measures
Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 1, pp. 223-240
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
A survey on the main results of the theory of gradient flows in metric spaces and in the Wasserstein space of probability measures obtained in [3] and [4], is presented.
@article{BUMI_2008_9_1_1_a8,
author = {Ambrosio, Luigi},
title = {Gradient {Flows} in {Metric} {Spaces} and in the {Spaces} of {Probability} {Measures,} and {Applications} to {Fokker-Planck} {Equations} with {Respect} to {Log-Concave} {Measures}},
journal = {Bollettino della Unione matematica italiana},
pages = {223--240},
publisher = {mathdoc},
volume = {Ser. 9, 1},
number = {1},
year = {2008},
zbl = {1210.28005},
mrnumber = {2388005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a8/}
}
TY - JOUR AU - Ambrosio, Luigi TI - Gradient Flows in Metric Spaces and in the Spaces of Probability Measures, and Applications to Fokker-Planck Equations with Respect to Log-Concave Measures JO - Bollettino della Unione matematica italiana PY - 2008 SP - 223 EP - 240 VL - 1 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a8/ LA - en ID - BUMI_2008_9_1_1_a8 ER -
%0 Journal Article %A Ambrosio, Luigi %T Gradient Flows in Metric Spaces and in the Spaces of Probability Measures, and Applications to Fokker-Planck Equations with Respect to Log-Concave Measures %J Bollettino della Unione matematica italiana %D 2008 %P 223-240 %V 1 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a8/ %G en %F BUMI_2008_9_1_1_a8
Ambrosio, Luigi. Gradient Flows in Metric Spaces and in the Spaces of Probability Measures, and Applications to Fokker-Planck Equations with Respect to Log-Concave Measures. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 1, pp. 223-240. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a8/