Gradient Flows in Metric Spaces and in the Spaces of Probability Measures, and Applications to Fokker-Planck Equations with Respect to Log-Concave Measures
Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 1, pp. 223-240

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

A survey on the main results of the theory of gradient flows in metric spaces and in the Wasserstein space of probability measures obtained in [3] and [4], is presented.
@article{BUMI_2008_9_1_1_a8,
     author = {Ambrosio, Luigi},
     title = {Gradient {Flows} in {Metric} {Spaces} and in the {Spaces} of {Probability} {Measures,} and {Applications} to {Fokker-Planck} {Equations} with {Respect} to {Log-Concave} {Measures}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {223--240},
     publisher = {mathdoc},
     volume = {Ser. 9, 1},
     number = {1},
     year = {2008},
     zbl = {1210.28005},
     mrnumber = {2388005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a8/}
}
TY  - JOUR
AU  - Ambrosio, Luigi
TI  - Gradient Flows in Metric Spaces and in the Spaces of Probability Measures, and Applications to Fokker-Planck Equations with Respect to Log-Concave Measures
JO  - Bollettino della Unione matematica italiana
PY  - 2008
SP  - 223
EP  - 240
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a8/
LA  - en
ID  - BUMI_2008_9_1_1_a8
ER  - 
%0 Journal Article
%A Ambrosio, Luigi
%T Gradient Flows in Metric Spaces and in the Spaces of Probability Measures, and Applications to Fokker-Planck Equations with Respect to Log-Concave Measures
%J Bollettino della Unione matematica italiana
%D 2008
%P 223-240
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a8/
%G en
%F BUMI_2008_9_1_1_a8
Ambrosio, Luigi. Gradient Flows in Metric Spaces and in the Spaces of Probability Measures, and Applications to Fokker-Planck Equations with Respect to Log-Concave Measures. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 1, pp. 223-240. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a8/