Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2008_9_1_1_a8, author = {Ambrosio, Luigi}, title = {Gradient {Flows} in {Metric} {Spaces} and in the {Spaces} of {Probability} {Measures,} and {Applications} to {Fokker-Planck} {Equations} with {Respect} to {Log-Concave} {Measures}}, journal = {Bollettino della Unione matematica italiana}, pages = {223--240}, publisher = {mathdoc}, volume = {Ser. 9, 1}, number = {1}, year = {2008}, zbl = {1210.28005}, mrnumber = {2388005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a8/} }
TY - JOUR AU - Ambrosio, Luigi TI - Gradient Flows in Metric Spaces and in the Spaces of Probability Measures, and Applications to Fokker-Planck Equations with Respect to Log-Concave Measures JO - Bollettino della Unione matematica italiana PY - 2008 SP - 223 EP - 240 VL - 1 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a8/ LA - en ID - BUMI_2008_9_1_1_a8 ER -
%0 Journal Article %A Ambrosio, Luigi %T Gradient Flows in Metric Spaces and in the Spaces of Probability Measures, and Applications to Fokker-Planck Equations with Respect to Log-Concave Measures %J Bollettino della Unione matematica italiana %D 2008 %P 223-240 %V 1 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a8/ %G en %F BUMI_2008_9_1_1_a8
Ambrosio, Luigi. Gradient Flows in Metric Spaces and in the Spaces of Probability Measures, and Applications to Fokker-Planck Equations with Respect to Log-Concave Measures. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 1, pp. 223-240. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a8/
[1] Maximality of infinite-dimensional Dirichlet forms and Hegh-Krohn's model of quantum fields. Ideas and methods in quantum and statistical physics (Oslo, 1988), Cambridge Univ. Press, Cambridge (2002), 301-330. | MR | Zbl
- ,[2] Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press (2000). | MR | Zbl
- - ,[3] Gradient flows in metric spaces and in the spaces of probability measures. Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, (2005). | MR | Zbl
- - ,[4] Gradient flows in spaces of probability measures. Handbook of Differential Equations. Evolutionary equations III, North Holland 2007. | DOI | MR
- ,[5] Existence and Stability for Fokker-Planck equations with log-concave reference measure. (2007), Submitted paper. | DOI | MR
- - ,[6] Solutions intégrales d'équations d'évolution dans un espace de Banach. C.R.Acad.Sci. Paris Sér. A-B, 274, (1972). | MR | Zbl
,[7] Gaussian measures. Mathematical Surveys and Monographs, 62, AMS (1998). | DOI | MR
,[8] Convex set functions in d-space. Period. Math. Hungar., 6 (1975), 111-136. | DOI | MR | Zbl
,[9] Opérateurs maximaux monotones. North-Holland, Amsterdam, (1973).
,[10] Contraction in the 2-Wasserstein length space and thermalization of granular media. Arch. Rational Mech. Anal., 179 (2006), 217-263. | DOI | MR | Zbl
- - ,[11] Problème de Skorohod multivoque, Annals of Probability, 26 no. 2 (1998), 500-532. | DOI | MR | Zbl
,[12] Conservative Stochastic Cahn-Hilliard equation with reflection, to appear in Annals of Probability (2007). | DOI | MR | Zbl
- ,[13] An introduction to $\Gamma$-convergence. Birkhauser (1993). | DOI | MR | Zbl
,[14] Second order partial differential equations in Hilbert spaces, London Mathematical Society Lecture Notes Series, 293, Cambridge University Press (2002). | DOI | MR | Zbl
- ,[15] Ergodicity for Infinite Dimensional Systems, London Mathematical Society Lecture Notes, n.229, Cambridge University Press (1996). | DOI | MR | Zbl
- ,[16] Problems of evolution in metric spaces and maximal decreasing curves. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., (8) 68 (1980), 180-187. | fulltext bdim | MR | Zbl
- and ,[17] Wasserstein space over the Wiener space. Preprint, 2007.
,[18] Monge-Kantorovitch measure transportation and Monge-Ampère equation on Wiener space, Probab. Theory Relat. Fields, 128 (2004), 347-385. | DOI | MR | Zbl
- ,[19] Dirichlet Forms and Symmetric Markov Processes. Walter de Gruyter, Berlin-New York (1994). | DOI | MR | Zbl
- - ,[20] Stochastic Interface Models. In: Lectures on Probability Theory and Statistics, Ecole d'Eté de Probabilités de Saint-Flour XXXIII - 2003 (ed. J. Picard), 103-274, Lect. Notes Math., 1869, Springer (2005). | DOI | MR
,[21] Fluctuations for $\nabla\phi$ interface model on a wall. Stoch. Proc. and Appl, 94 (2001), 1-27. | DOI | MR | Zbl
- ,[22] Motion by mean curvature from the Ginzburg-Landau $\nabla\phi$ interface model. Comm. Math. Phys. 185 (1997), 1-36. | DOI | MR | Zbl
- ,[23] Equilibrium fluctuations for $\nabla\phi$ interface model, Ann. Probab. 29 (2001), 1138-1172. | DOI | MR | Zbl
- - ,[24] Partial differential equations. Springer (4th. ed.) (1970). | MR
,[25] The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29 (1998), 1-17. | DOI | MR | Zbl
- - ,[26] Open map theorem for metric spaces. St. Petersburg Math. J., 17 (2006), 477-491. | DOI | MR | Zbl
,[27] Introduction to the Theory of (Non-Symmetric) Dirichlet Forms. Universitext, Springer-Verlag (1992). | DOI | MR | Zbl
- ,[28] White noise driven quasilinear SPDEs with reflection, Prob. Theory and Rel. Fields, 93 (1992), 77-89. | DOI | MR | Zbl
- ,[29] A convexity principle for interacting gases. Adv. Math., 128, (1997) 153-179. | DOI | MR | Zbl
,[30] The geometry of dissipative evolution equations: the porous medium equation. Comm. PDE, 26 (2001), 101-174. | DOI | MR | Zbl
,[31] Quasigeodesics and gradient curves in Alexandrov spaces. Unpublished preprint (1994). | MR
and ,[32] Continuous Martingales and Brownian Motion, Springer Verlag (1991). | DOI | MR | Zbl
- ,[33] Gradient flows and diffusion semigroups in metric spaces and lower curvature bounds. CRAS note (2007), in press. | DOI | MR
,[34] Random Surfaces, Asterisque, No. 304 (2005). | MR
,[35] Stochastic equations for diffusions in a bounded region, Theory Probab. Appl. 6 (1961), 264-274.
,[36] Interface motion in models with stochastic dynamics, J. Stat. Phys. 71 (1993), 1081-1132. | DOI | MR | Zbl
,[37] Multidimensional diffusion processes. Springer Verlag, second ed (1997). | MR | Zbl
- ,[38] Stochastic differential equations with reflecting boundary condition in convex regions, Hiroshima Math. J. 9 (1979), 163-177. | MR | Zbl
,[39] Topics in optimal transportation. Graduate Studies in Mathematics, 58 (2003), AMS. | DOI | MR | Zbl
,[40] Integration by parts formulae on convex sets of paths and applications to SPDEs with reflection, Probab. Theory Related Fields, 123 no. 4 (2002), 579-600. | DOI | MR | Zbl
,[41] Integration by parts on $\delta$-Bessel Bridges, $\delta > 3$, and related SPDEs, Annals of Probability, 31 no. 1 (2003), 323-348. | DOI | MR | Zbl
,[42] Fluctuations for a $\nabla\phi$interface model with repulsion from a wall, Prob. Theory and Rel. Fields, 129 no. 3 (2004), 315-339. | DOI | MR | Zbl
,[43] Convergence of approximations of monotone gradient systems, Journal of Evolution Equations, 6 no. 4 (2006), 601-619. | DOI | MR | Zbl
,