$L^p$ Maximal Regularity for Second Order Cauchy Problems is Independent of $p$
Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 1, pp. 147-157

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

If the second order problem $\ddot{u} + \dot{u} + Au = f$ has $L^p$ maximal regularity for some $p \in (1, \infty)$, then it has $L^{p}$ maximal regularity for every $p \in (1, \infty)$.
@article{BUMI_2008_9_1_1_a6,
     author = {Chill, Ralph and Srivastava, Sachi},
     title = {$L^p$ {Maximal} {Regularity} for {Second} {Order} {Cauchy} {Problems} is {Independent} of $p$},
     journal = {Bollettino della Unione matematica italiana},
     pages = {147--157},
     publisher = {mathdoc},
     volume = {Ser. 9, 1},
     number = {1},
     year = {2008},
     zbl = {1210.34078},
     mrnumber = {2388002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a6/}
}
TY  - JOUR
AU  - Chill, Ralph
AU  - Srivastava, Sachi
TI  - $L^p$ Maximal Regularity for Second Order Cauchy Problems is Independent of $p$
JO  - Bollettino della Unione matematica italiana
PY  - 2008
SP  - 147
EP  - 157
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a6/
LA  - en
ID  - BUMI_2008_9_1_1_a6
ER  - 
%0 Journal Article
%A Chill, Ralph
%A Srivastava, Sachi
%T $L^p$ Maximal Regularity for Second Order Cauchy Problems is Independent of $p$
%J Bollettino della Unione matematica italiana
%D 2008
%P 147-157
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a6/
%G en
%F BUMI_2008_9_1_1_a6
Chill, Ralph; Srivastava, Sachi. $L^p$ Maximal Regularity for Second Order Cauchy Problems is Independent of $p$. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 1, pp. 147-157. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a6/