$L^p$ Maximal Regularity for Second Order Cauchy Problems is Independent of $p$
Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 1, pp. 147-157.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

If the second order problem $\ddot{u} + \dot{u} + Au = f$ has $L^p$ maximal regularity for some $p \in (1, \infty)$, then it has $L^{p}$ maximal regularity for every $p \in (1, \infty)$.
Si prova che se il problema del secondo ordine $\ddot{u} + \dot{u} + Au = f$ ha regolarità massimale $L^p$ per qualche $p \in (1, \infty)$ allora ha regolarità massimale $L^p$ per ogni $p \in (1, \infty)$.
@article{BUMI_2008_9_1_1_a6,
     author = {Chill, Ralph and Srivastava, Sachi},
     title = {$L^p$ {Maximal} {Regularity} for {Second} {Order} {Cauchy} {Problems} is {Independent} of $p$},
     journal = {Bollettino della Unione matematica italiana},
     pages = {147--157},
     publisher = {mathdoc},
     volume = {Ser. 9, 1},
     number = {1},
     year = {2008},
     zbl = {1210.34078},
     mrnumber = {2388002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a6/}
}
TY  - JOUR
AU  - Chill, Ralph
AU  - Srivastava, Sachi
TI  - $L^p$ Maximal Regularity for Second Order Cauchy Problems is Independent of $p$
JO  - Bollettino della Unione matematica italiana
PY  - 2008
SP  - 147
EP  - 157
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a6/
LA  - en
ID  - BUMI_2008_9_1_1_a6
ER  - 
%0 Journal Article
%A Chill, Ralph
%A Srivastava, Sachi
%T $L^p$ Maximal Regularity for Second Order Cauchy Problems is Independent of $p$
%J Bollettino della Unione matematica italiana
%D 2008
%P 147-157
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a6/
%G en
%F BUMI_2008_9_1_1_a6
Chill, Ralph; Srivastava, Sachi. $L^p$ Maximal Regularity for Second Order Cauchy Problems is Independent of $p$. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 1, pp. 147-157. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a6/

[1] P. Acquistapace - B. Terreni, A unified approach to abstract linear non-autonomous parabolic equations, Rend. Sem. Mat. Univ. Padova, 78 (1987), 47-107. | fulltext EuDML | MR | Zbl

[2] W. Arendt - C. J. K. Batty - M. Hieber - F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems, Monographs in Mathematics, vol. 96, Birkhäuser, Basel, 2001. | DOI | MR | Zbl

[3] A. Benedek - A. P. Calderón - R. Panzone, Convolution operators on Banach space valued functions, Proc. Nat. Acad. Sci. USA, 48 (1962), 356-365. | MR | Zbl

[4] P. Cannarsa - V. Vespri, On maximal $L^p$ regularity for the abstract Cauchy problem, Boll. Un. Mat. Ital. B, 5 (1986), 165-175. | MR | Zbl

[5] R. Chill - S. Srivastava, $L^p$-maximal regularity for second order Cauchy problems, Math. Z., 251 (2005), 751-781. | DOI | MR | Zbl

[6] G. Da Prato - P. Grisvard, Sommes d'opérateurs linéaires et èquations différentielles opérationnelles, J. Math. Pures Appl., 54 (1975), 305-387. | MR | Zbl

[7] R. Dautray - J.-L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques. Vol. VIII, INSTN: Collection Enseignement, Masson, Paris, 1987. | MR

[8] L. De Simon, Un'applicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineari astratte del primo ordine, Rend. Sem. Mat. Univ. Padova, 34 (1964), 547-558. | fulltext EuDML | MR | Zbl

[9] G. Dore - A. Venni, On the closedness of the sum of two closed operators, Math. Z., 196 (1987), 189-201. | fulltext EuDML | DOI | MR | Zbl

[10] M. Hieber, Operator valued Fourier multipliers, Topics in nonlinear analysis. The Herbert Amann anniversary volume (J. Escher, G. Simonett, eds.), Progress in Nonlinear Differential Equations and Their Applications, vol. 35, Birkhauser Verlag, Basel, 1999, pp. 363-380. | MR | Zbl

[11] R. Labbas - B. Terreni, Somme d'opérateurs linéaires de type parabolique. I, Boll. Un. Mat. Ital. B (7) 1 (1987), 545-569. | MR | Zbl

[12] P. E. Sobolevskii, Coerciveness inequalities for abstract parabolic equations, Dokl. Akad. Nauk SSSR, 157 (1964), 52-55. | MR

[13] E. Zeidler, Nonlinear Functional Analysis and Its Applications. I, Springer Verlag, New York, Berlin, Heidelberg, 1990. | DOI | MR | Zbl