$L^p$ Maximal Regularity for Second Order Cauchy Problems is Independent of $p$
Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 1, pp. 147-157
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
If the second order problem $\ddot{u} + \dot{u} + Au = f$ has $L^p$ maximal regularity for some $p \in (1, \infty)$, then it has $L^{p}$ maximal regularity for every $p \in (1, \infty)$.
@article{BUMI_2008_9_1_1_a6,
author = {Chill, Ralph and Srivastava, Sachi},
title = {$L^p$ {Maximal} {Regularity} for {Second} {Order} {Cauchy} {Problems} is {Independent} of $p$},
journal = {Bollettino della Unione matematica italiana},
pages = {147--157},
year = {2008},
volume = {Ser. 9, 1},
number = {1},
zbl = {1210.34078},
mrnumber = {2388002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a6/}
}
TY - JOUR AU - Chill, Ralph AU - Srivastava, Sachi TI - $L^p$ Maximal Regularity for Second Order Cauchy Problems is Independent of $p$ JO - Bollettino della Unione matematica italiana PY - 2008 SP - 147 EP - 157 VL - 1 IS - 1 UR - http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a6/ LA - en ID - BUMI_2008_9_1_1_a6 ER -
Chill, Ralph; Srivastava, Sachi. $L^p$ Maximal Regularity for Second Order Cauchy Problems is Independent of $p$. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 1, pp. 147-157. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a6/