Asymptotics for Eigenvalues of a Non-Linear Integral System
Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 1, pp. 105-119
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
Let $I=[a, b] \subset \mathbb{R}$, let $1 q, p \infty$, let $u$ and $v$ be positive functions with $u \in L_{p'}(I)$ e $v \in L_q(I)$ and let $T \colon L_p(I) \to L_q(I)$ be the Hardy-type operator given by \begin{equation*} (Tf)(x) = v(x) \int_a^x f(t)u(t) \, dt, \quad x\in I. \end{equation*} We show that the asymptotic behavior of the eigenvalues $\lambda$ of the non-linear integral system \begin{equation*} g(x) = (TF)(x) \qquad (f(x))_{(p)} = \lambda(T^{*}g_{(p)}))(x) \end{equation*} (where, for example, $t_{(p)} = |t|^{p-1}\operatorname{sgn}(t)$ is given by \begin{align*} \lim_{n \to \infty}n\hat{\lambda}_n(T) = c_{p,q} \left( \int_I (uv)^r)^{1/r} \, dt \right)^{1/r}, \qquad \text{for } 1 p q \infty \\ \lim_{n \to \infty} n\check{\lambda}_n(T) = c_{p,q} \left( \int_I (uv)^r \, dt \right)^{1/r} \qquad \text{for } 1 q p \infty \end{align*} Here $r = \frac{1}{p'} + \frac{1}{p}$, $c_{p,q}$ is an explicit constant depending only on $p$ and $q$, $\hat{\lambda}(T) = \max (sp_{n} (T, p, q))$, $\check{\lambda}_{n}(T) = \min(sp_{n}(T, p, q))$ where $sp_{n}(T, p, q)$ stands for the set of all eigenvalues $\lambda$ corresponding to eigenfunctions $g$ with $n$ zeros.
@article{BUMI_2008_9_1_1_a4,
author = {Edmunds, D.E. and Lang, J.},
title = {Asymptotics for {Eigenvalues} of a {Non-Linear} {Integral} {System}},
journal = {Bollettino della Unione matematica italiana},
pages = {105--119},
publisher = {mathdoc},
volume = {Ser. 9, 1},
number = {1},
year = {2008},
zbl = {1164.45004},
mrnumber = {2388000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a4/}
}
TY - JOUR AU - Edmunds, D.E. AU - Lang, J. TI - Asymptotics for Eigenvalues of a Non-Linear Integral System JO - Bollettino della Unione matematica italiana PY - 2008 SP - 105 EP - 119 VL - 1 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a4/ LA - en ID - BUMI_2008_9_1_1_a4 ER -
Edmunds, D.E.; Lang, J. Asymptotics for Eigenvalues of a Non-Linear Integral System. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 1, pp. 105-119. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a4/