Asymptotics for Eigenvalues of a Non-Linear Integral System
Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 1, pp. 105-119.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Let $I=[a, b] \subset \mathbb{R}$, let $1 q, p \infty$, let $u$ and $v$ be positive functions with $u \in L_{p'}(I)$ e $v \in L_q(I)$ and let $T \colon L_p(I) \to L_q(I)$ be the Hardy-type operator given by \begin{equation*} (Tf)(x) = v(x) \int_a^x f(t)u(t) \, dt, \quad x\in I. \end{equation*} We show that the asymptotic behavior of the eigenvalues $\lambda$ of the non-linear integral system \begin{equation*} g(x) = (TF)(x) \qquad (f(x))_{(p)} = \lambda(T^{*}g_{(p)}))(x) \end{equation*} (where, for example, $t_{(p)} = |t|^{p-1}\operatorname{sgn}(t)$ is given by \begin{align*} \lim_{n \to \infty}n\hat{\lambda}_n(T) = c_{p,q} \left( \int_I (uv)^r)^{1/r} \, dt \right)^{1/r}, \qquad \text{for } 1 p q \infty \\ \lim_{n \to \infty} n\check{\lambda}_n(T) = c_{p,q} \left( \int_I (uv)^r \, dt \right)^{1/r} \qquad \text{for } 1 q p \infty \end{align*} Here $r = \frac{1}{p'} + \frac{1}{p}$, $c_{p,q}$ is an explicit constant depending only on $p$ and $q$, $\hat{\lambda}(T) = \max (sp_{n} (T, p, q))$, $\check{\lambda}_{n}(T) = \min(sp_{n}(T, p, q))$ where $sp_{n}(T, p, q)$ stands for the set of all eigenvalues $\lambda$ corresponding to eigenfunctions $g$ with $n$ zeros.
Sia $I=[a, b]$ un sottinsieme di $\mathbb{R}$. Siano $1 q, p \infty$ siano $u$ e $v$ funzioni positive, con $u \in L_{p'}(I)$ e $v \in L_q(I)$. Sia $T \colon L_p(I) \to L_q(I)$ un operatore di Hardy definito nel modo seguente: \begin{equation*} (Tf)(x) = v(x) \int_a^x f(t)u(t) \, dt, \quad x\in I. \end{equation*} Dimostereremo che il comportamento asintotico degli autovalori $\lambda$ nel sistema integrale non lineare \begin{equation*} g(x) = (TF)(x) \qquad (f(x))_{(p)} = \lambda(T^{*}g_{(p)}))(x) \end{equation*} (dove, per esempio $t_{(p)} = |t|^{p-1}\operatorname{sgn}(t)$) è dato da \begin{align*} \lim_{n \to \infty}n\hat{\lambda}_n(T) = c_{p,q} \left( \int_I (uv)^r)^{1/r} \, dt \right)^{1/r}, \qquad \text{quando } 1 p q \infty \\ \lim_{n \to \infty} n\check{\lambda}_n(T) = c_{p,q} \left( \int_I (uv)^r \, dt \right)^{1/r} \qquad \text{quando } 1 q p \infty \end{align*} Qui $r = \frac{1}{p'} + \frac{1}{p}$, $c_{p,q}$ \`e una costante esplicita che dipende solo da $p$ e $q$, $\hat{\lambda}(T) = \max (sp_{n} (T, p, q))$, $\check{\lambda}_{n}(T) = \min(sp_{n}(T, p, q)$), dove $sp_{n}(T, p, q)$ rappresenta l'insieme di tutti gli autovalori $\lambda$ che corrispondono alle autofunzioni $g$ con $n$ zeri.
@article{BUMI_2008_9_1_1_a4,
     author = {Edmunds, D.E. and Lang, J.},
     title = {Asymptotics for {Eigenvalues} of a {Non-Linear} {Integral} {System}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {105--119},
     publisher = {mathdoc},
     volume = {Ser. 9, 1},
     number = {1},
     year = {2008},
     zbl = {1164.45004},
     mrnumber = {2388000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a4/}
}
TY  - JOUR
AU  - Edmunds, D.E.
AU  - Lang, J.
TI  - Asymptotics for Eigenvalues of a Non-Linear Integral System
JO  - Bollettino della Unione matematica italiana
PY  - 2008
SP  - 105
EP  - 119
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a4/
LA  - en
ID  - BUMI_2008_9_1_1_a4
ER  - 
%0 Journal Article
%A Edmunds, D.E.
%A Lang, J.
%T Asymptotics for Eigenvalues of a Non-Linear Integral System
%J Bollettino della Unione matematica italiana
%D 2008
%P 105-119
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a4/
%G en
%F BUMI_2008_9_1_1_a4
Edmunds, D.E.; Lang, J. Asymptotics for Eigenvalues of a Non-Linear Integral System. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 1, pp. 105-119. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a4/

[1] C. Bennewitz, Approximation numbers = Singular values, Journal of Computational and Applied Mathematics, to appear. | DOI | MR | Zbl

[2] A. P. Buslaev, On Bernstein-Nikol'ski inequalities and widths of Sobolev classes of functions, Dokl. Akad. Nauk, 323, no. 2 (1992), 202-205. | MR

[3] A. P. Buslaev - V. M. Tikhomirov, Spectra of nonlinear differential equations and widths of Sobolev classes. Mat. Sb., 181 (1990), 1587-1606, English transl. in Math. USSR Sb., 71 (1992), 427-446. | DOI | MR | Zbl

[4] D. E. Edmunds - W. D. Evans, Spectral theory and differential operators, Oxford University Press, Oxford, 1987. | MR | Zbl

[5] D. E. Edmunds - W. D. Evans, Hardy operators, function spaces and embeddings, Springer, Berlin-Heidelberg-New York, 2004. | DOI | MR

[6] D. E. Edmunds - J. Lang, Bernstein widths of Hardy-type operators in a non-homogeneous case, J. Math. Analysis and Applications, 325 (2007), 1060-1076. | DOI | MR | Zbl

[7] D. E. Edmunds - J. Lang, Approximation numbers and Kolmogorov widths of Hardy-type operators in a non-homogeneous case, Mathematische Nachrichten, 279, no. 7 (2006), 727-742. | DOI | MR | Zbl

[8] Nguen, T'En Nam, The spectrum of nonlinear integral equations and widths of function classes, Math. Notes, 53, no. 3-4 (1993), 424-429. | MR

[9] A. Kufner - O. John - S. Fucik, Function spaces, Noordhoff International Publishing, Leyden, (1977). | MR