Connected Components of Hurwitz Spaces of Coverings with One Special Fiber and Monodromy Groups Contained in a Weyl Group of Type $B_d$
Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 1, pp. 87-103.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Let $X$, $X'$, $Y$ be smooth projective complex curves with $Y$ curve of genus $\geq 1$. Let $d$ be an integer $\geq 3$, let $\underline{e} = (e_{1}, \ldots, e_{r})$ be a partition of $d$ and let $|e|= \sum_{i=1}^{r}(e_i - 1)$. Let $X \xrightarrow{\pi} X' \xrightarrow{f} Y$ be a sequence of coverings where $\pi$ is a degree 2 branched covering and $f$ is a degree $d$ covering, with monodromy group $S_d$, branched in $n_2 + 1$ points, one of which is special point $c$ whose local monodromy has cycle type given by $\underline{e}$. Moreover the branch locus of the covering $\pi$ is contained in $f^{-1} (c)$. In this paper we prove the irreducibility of the Hurwitz spaces that parameterize sequences of coverings as above with monodromy group a Weyl group of type $D_d$ when $n_2 +|\underline{e}| \geq 2d$. Besides we determine the connected components of the Hurwitz spaces that parameterize sequences of coverings as above but with monodromy group a Weyl group of type $B_d$.
In questo articolo vengono studiati rivestimenti $X \xrightarrow{\pi} X' \xrightarrow{f} Y$ dove $X$, $X'$, $Y$ sono curve proiettive complesse non singolari e $f$ è un rivestimento di grado $d \geq 3$, con gruppo di monodromia $S_d$, ramificato in $n_2+1$ punti uno dei quali è un punto speciale $c$ la cui monodromia locale ha struttura ciclica data dalla partizione $\underline{e} = (e_1, \ldots, e_r )$ di $d$. Inoltre $\pi$ è un rivestimento ramificato di grado 2 con luogo discriminante contenuto in $f^{-1} (c)$. Se si suppone $n_2 + |\underline{e}| \geq 2d$ dove $|\underline{e}|= \sum_{i=1}^{r}(e_i - 1)$ questi rivestimenti hanno come gruppo di monodromia $G$ un gruppo di Weyl di tipo $D_d$ oppure $B_d$. In questo articolo viene dimostrato che quando $G = W(D_d)$ e $n_2 +|\underline{e}| \geq 2d$ gli spazi di Hurwitz che parametrizzano rivestimenti come sopra sono irriducibili, mentre quando $G=W(B_d)$ non lo sono e, in quest'ultimo caso, ne vengono determinate le componenti connesse. In questo modo viene completato lo studio degli spazi di Hurwitz che parametrizzano rivestimenti con una fibra speciale e con gruppo di monodromia un gruppo di Weyl di tipo $W(B_d)$ iniziato in [22].
@article{BUMI_2008_9_1_1_a3,
     author = {Vetro, Francesca},
     title = {Connected {Components} of {Hurwitz} {Spaces} of {Coverings} with {One} {Special} {Fiber} and {Monodromy} {Groups} {Contained} in a {Weyl} {Group} of {Type} $B_d$},
     journal = {Bollettino della Unione matematica italiana},
     pages = {87--103},
     publisher = {mathdoc},
     volume = {Ser. 9, 1},
     number = {1},
     year = {2008},
     zbl = {1200.14053},
     mrnumber = {2387999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a3/}
}
TY  - JOUR
AU  - Vetro, Francesca
TI  - Connected Components of Hurwitz Spaces of Coverings with One Special Fiber and Monodromy Groups Contained in a Weyl Group of Type $B_d$
JO  - Bollettino della Unione matematica italiana
PY  - 2008
SP  - 87
EP  - 103
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a3/
LA  - en
ID  - BUMI_2008_9_1_1_a3
ER  - 
%0 Journal Article
%A Vetro, Francesca
%T Connected Components of Hurwitz Spaces of Coverings with One Special Fiber and Monodromy Groups Contained in a Weyl Group of Type $B_d$
%J Bollettino della Unione matematica italiana
%D 2008
%P 87-103
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a3/
%G en
%F BUMI_2008_9_1_1_a3
Vetro, Francesca. Connected Components of Hurwitz Spaces of Coverings with One Special Fiber and Monodromy Groups Contained in a Weyl Group of Type $B_d$. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 1, pp. 87-103. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a3/

[1] R. Biggers - M. Fried, Irreducibility of moduli spaces of cyclic unramified covers of genus g curves, Trans. Amer. Math. Soc., 295, no. 1 (1986), 59-70. | DOI | MR | Zbl

[2] J. S. Birman, On braid groups, Comm. Pure Appl. Math., 22 (1998), 41-72. | DOI | MR | Zbl

[3] N. Bourbaki, Groupes et algebres de Lie, Ch. 4-6, Éléments de Mathématique, 34 (1968), Hermann, Paris. | MR

[4] R. W. Carter, Conjugacy classes in the Weyl group, Compositio Math., 25 (1972), 1- 59. | fulltext EuDML | MR | Zbl

[5] R. Donagi, Decomposition of spectral covers, Astérisque, 218 (1993), 145-175. | MR | Zbl

[6] E. Fadell - L. Neuwirth, Configuration spaces, Math. Scand., 10 (1962), 111-118. | fulltext EuDML | DOI | MR | Zbl

[7] M. Fried - H. Völklein, The inverse Galois problem and rational points on moduli spaces, Mathematische Annalen 290, no. 4 (1991), 771-800. | fulltext EuDML | DOI | MR

[8] W. Fulton, Hurwitz Schemes and irreducibility of moduli of algebraic curves, Ann. of Math. (2), 10 (1969), 542-575. | DOI | MR | Zbl

[9] T. Graber - J. Harris - J. Starr, A note on Hurwitz schemes of covers of a positive genus curve, preprint, arXiv: math. AG/0205056.

[10] T. Graber - J. Harris - J. Starr, Families of rationally connected varieties, J. Amer. Math. Soc., 16, no. 1 (2003), 57-67. | DOI | MR | Zbl

[11] A. Hurwitz, Ueber Riemann'schen Flachen mit gegebenen Verzweigungspunkten, Math. Ann., 39 (1891), 1-61. | fulltext EuDML | DOI | MR | Zbl

[12] V. Kanev, Spectral curves, simple Lie algebras, and Prym-Tjurin varieties, Theta functions-Bowdoin 1987, Part 1, (Brunswick, ME, 1987), Proc. Sympos. Pure Math., 49, Amer. Math. Soc., Providence, RI, (1989), 627-645. | MR

[13] V. Kanev, Spectral curves and Prym-Tjurin varietis. I, Abelian varieties (Egloffstein, 1993), de Gruyter, Berlin 1995, 151-198. | MR | Zbl

[14] V. Kanev, Irreducibility of Hurwitz spaces, Preprint N. 241, February 2004, Dipartimento di Matematica ed Applicazioni, Università degli Studi di Palermo, arXiv: math. AG/0509154. | Zbl

[15] V. Kanev, Hurwitz spaces of Galois coverings of $\mathbb{P}^1$ with Galois groups Weyl groups, J. Algebra, 305 (2006), 442-456. | DOI | MR | Zbl

[16] P. Kluitmann, Hurwitz action and finite quotients of braid groups, in: Braids (Santa Cruz, CA, 1986), in: Contemp. Math., 78, Amer. Math. Soc., Providence, RI, (1988), 299-325. | DOI | MR

[17] S. Mochizuki, The geometry of the compactification of the Hurwitz Scheme, Publ. Res. Inst. Math. Sci., 31 (1995), 355-441. | DOI | MR | Zbl

[18] S. M. Natanzon, Topology of 2-dimensional coverings and meromorphic functions on real and complex algebraic curves, Selected translations., Selecta Math. Soviet., 12, no. 3 (1993), 251-291. | MR

[19] G. P. Scott, Braid groups and the group of homeomorphisms of a surface, Proc. Cambrige Philos. Soc., 68 (1970), 605-617. | MR | Zbl

[20] F. Severi, Vorlesungen uber algebraische Geometrie, Teubuer, Leibzig, 1921. | MR

[21] F. Vetro, Irreducibility of Hurwitz spaces of coverings with one special fiber, Indag. Mathem., 17, no. 1 (2006), 115-127. | DOI | MR | Zbl

[22] F. Vetro, Irreducibility of Hurwitz spaces of coverings with monodromy groups Weyl groups of type $W(B_d)$, Bollettino U.M.I., (8) 10-B (2007), 405-431. | fulltext bdim | fulltext EuDML | MR | Zbl