Squarefree Lexsegment Ideals with Linear Resolution
Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 1, pp. 275-291
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
In this paper we determine all squarefree completely lexsegment ideals which have a linear resolution. Let $M_d$ denote the set of all squarefree monomials of degree $d$ in a polynomial ring $k[x_1, \ldots, x_n ]$ in $n$ variables over a field $k$. We order the monomials lexicographically such that $x_1 > x_2 > \ldots > x_n$, thus a lexsegment (of degree $d$) is a subset of $M_d$ of the form $L(u, v) = \{w \in M_d: u \geq w \geq v\}$ for some $u, v \in M_d$ con $u \geq v$. An ideal generated by a lexsegment is called a lexsegment ideal. We describe the procedure to determine when such an ideal has a linear resolution.
@article{BUMI_2008_9_1_1_a11,
author = {Bonanzinga, Vittoria and Sorrenti, Loredana},
title = {Squarefree {Lexsegment} {Ideals} with {Linear} {Resolution}},
journal = {Bollettino della Unione matematica italiana},
pages = {275--291},
publisher = {mathdoc},
volume = {Ser. 9, 1},
number = {1},
year = {2008},
zbl = {1164.13009},
mrnumber = {2424294},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a11/}
}
TY - JOUR AU - Bonanzinga, Vittoria AU - Sorrenti, Loredana TI - Squarefree Lexsegment Ideals with Linear Resolution JO - Bollettino della Unione matematica italiana PY - 2008 SP - 275 EP - 291 VL - 1 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a11/ LA - en ID - BUMI_2008_9_1_1_a11 ER -
Bonanzinga, Vittoria; Sorrenti, Loredana. Squarefree Lexsegment Ideals with Linear Resolution. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 1, pp. 275-291. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a11/