Squarefree Lexsegment Ideals with Linear Resolution
Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 1, pp. 275-291

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this paper we determine all squarefree completely lexsegment ideals which have a linear resolution. Let $M_d$ denote the set of all squarefree monomials of degree $d$ in a polynomial ring $k[x_1, \ldots, x_n ]$ in $n$ variables over a field $k$. We order the monomials lexicographically such that $x_1 > x_2 > \ldots > x_n$, thus a lexsegment (of degree $d$) is a subset of $M_d$ of the form $L(u, v) = \{w \in M_d: u \geq w \geq v\}$ for some $u, v \in M_d$ con $u \geq v$. An ideal generated by a lexsegment is called a lexsegment ideal. We describe the procedure to determine when such an ideal has a linear resolution.
@article{BUMI_2008_9_1_1_a11,
     author = {Bonanzinga, Vittoria and Sorrenti, Loredana},
     title = {Squarefree {Lexsegment} {Ideals} with {Linear} {Resolution}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {275--291},
     publisher = {mathdoc},
     volume = {Ser. 9, 1},
     number = {1},
     year = {2008},
     zbl = {1164.13009},
     mrnumber = {2424294},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a11/}
}
TY  - JOUR
AU  - Bonanzinga, Vittoria
AU  - Sorrenti, Loredana
TI  - Squarefree Lexsegment Ideals with Linear Resolution
JO  - Bollettino della Unione matematica italiana
PY  - 2008
SP  - 275
EP  - 291
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a11/
LA  - en
ID  - BUMI_2008_9_1_1_a11
ER  - 
%0 Journal Article
%A Bonanzinga, Vittoria
%A Sorrenti, Loredana
%T Squarefree Lexsegment Ideals with Linear Resolution
%J Bollettino della Unione matematica italiana
%D 2008
%P 275-291
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a11/
%G en
%F BUMI_2008_9_1_1_a11
Bonanzinga, Vittoria; Sorrenti, Loredana. Squarefree Lexsegment Ideals with Linear Resolution. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 1, pp. 275-291. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a11/