Some Remarks on Prym-Tyurin Varieties
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 1055-1069
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
The aims of the present paper can be described as follows: a) In [2] Beauville showed that if some endomorphism $u$ a Jacobian $J(C)$ has connected kernel, the principal polarization on $J(C)$ induces a multiple of the principal polarization on the image of $u$. We reformulate and complete this theorem proving "constructively" the following: Theorem. Let $Z \subset J(C)$ be an abelian subvariety and $Y$ its complementary variety. $Z$ is a Prym-Tyurin variety with respect to $J(C)$ if and only if the following sequence $0 \to Y \hookrightarrow J(C) \to Z \to 0$ is exact. b) In [5] Izadi set the question whether every p.p.a.v. is a Prym-Tyurin variety for a symmetric fixed point free correspondence. In this work a contribution to a possible negative answer to this question is provided by building a classical Prym-Tyurin variety explicitly, but this variety can never be defined through a fixed point free correspondence.
@article{BUMI_2007_8_10B_3_a39,
author = {Parigi, Giuliano},
title = {Some {Remarks} on {Prym-Tyurin} {Varieties}},
journal = {Bollettino della Unione matematica italiana},
pages = {1055--1069},
publisher = {mathdoc},
volume = {Ser. 8, 10B},
number = {3},
year = {2007},
zbl = {1196.14035},
mrnumber = {2507913},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a39/}
}
Parigi, Giuliano. Some Remarks on Prym-Tyurin Varieties. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 1055-1069. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a39/