Some Remarks on Prym-Tyurin Varieties
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 1055-1069

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The aims of the present paper can be described as follows: a) In [2] Beauville showed that if some endomorphism $u$ a Jacobian $J(C)$ has connected kernel, the principal polarization on $J(C)$ induces a multiple of the principal polarization on the image of $u$. We reformulate and complete this theorem proving "constructively" the following: Theorem. Let $Z \subset J(C)$ be an abelian subvariety and $Y$ its complementary variety. $Z$ is a Prym-Tyurin variety with respect to $J(C)$ if and only if the following sequence $0 \to Y \hookrightarrow J(C) \to Z \to 0$ is exact. b) In [5] Izadi set the question whether every p.p.a.v. is a Prym-Tyurin variety for a symmetric fixed point free correspondence. In this work a contribution to a possible negative answer to this question is provided by building a classical Prym-Tyurin variety explicitly, but this variety can never be defined through a fixed point free correspondence.
@article{BUMI_2007_8_10B_3_a39,
     author = {Parigi, Giuliano},
     title = {Some {Remarks} on {Prym-Tyurin} {Varieties}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {1055--1069},
     publisher = {mathdoc},
     volume = {Ser. 8, 10B},
     number = {3},
     year = {2007},
     zbl = {1196.14035},
     mrnumber = {2507913},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a39/}
}
TY  - JOUR
AU  - Parigi, Giuliano
TI  - Some Remarks on Prym-Tyurin Varieties
JO  - Bollettino della Unione matematica italiana
PY  - 2007
SP  - 1055
EP  - 1069
VL  - 10B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a39/
LA  - en
ID  - BUMI_2007_8_10B_3_a39
ER  - 
%0 Journal Article
%A Parigi, Giuliano
%T Some Remarks on Prym-Tyurin Varieties
%J Bollettino della Unione matematica italiana
%D 2007
%P 1055-1069
%V 10B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a39/
%G en
%F BUMI_2007_8_10B_3_a39
Parigi, Giuliano. Some Remarks on Prym-Tyurin Varieties. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 1055-1069. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a39/