Minimum Free Energy for a Rigid Heat Conductor and Application to a Discrete Spectrum Model
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 969-987.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

A general closed expression is given for the minimum free energy for a rigid heat conductor with memory effects. This formula, derived in the frequency domain, is related to the maximum recoverable work we can obtain from the material at a given state, which is characterized by the temperature and the past history of its gradient. Another explicit formula of the minimum free energy is also derived and used to obtain the results related to the particular case of a discrete spectrum model material response.
Si considera il problema di trovare una espressione dell'energia libera minima per un conduttore di calore rigido e con memoria. Tale energia fornisce il massimo lavoro ottenibile dal materiale in un dato stato, caratterizzato in questo lavoro dalla temperatura e dalla storia passata del gradiente di questa. Una equivalente espressione viene ottenuta e applicata al particolare caso di un conduttore con spettro discreto.
@article{BUMI_2007_8_10B_3_a35,
     author = {Amendola, Giovambattista and Manes, Adele},
     title = {Minimum {Free} {Energy} for a {Rigid} {Heat} {Conductor} and {Application} to a {Discrete} {Spectrum} {Model}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {969--987},
     publisher = {mathdoc},
     volume = {Ser. 8, 10B},
     number = {3},
     year = {2007},
     zbl = {1183.80008},
     mrnumber = {2507909},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a35/}
}
TY  - JOUR
AU  - Amendola, Giovambattista
AU  - Manes, Adele
TI  - Minimum Free Energy for a Rigid Heat Conductor and Application to a Discrete Spectrum Model
JO  - Bollettino della Unione matematica italiana
PY  - 2007
SP  - 969
EP  - 987
VL  - 10B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a35/
LA  - en
ID  - BUMI_2007_8_10B_3_a35
ER  - 
%0 Journal Article
%A Amendola, Giovambattista
%A Manes, Adele
%T Minimum Free Energy for a Rigid Heat Conductor and Application to a Discrete Spectrum Model
%J Bollettino della Unione matematica italiana
%D 2007
%P 969-987
%V 10B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a35/
%G en
%F BUMI_2007_8_10B_3_a35
Amendola, Giovambattista; Manes, Adele. Minimum Free Energy for a Rigid Heat Conductor and Application to a Discrete Spectrum Model. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 969-987. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a35/

[1] G. Amendola, The minimum free energy for incompressible viscoelastic fluids, Math. Meth. Appl. Sci., 29 (2006), 2201-2223. | DOI | MR | Zbl

[2] G. Amendola - S. Carillo, Thermal work and minimum free energy in a heat conductor with memory, Quart. Jl. Mech. Appl. Math., 57 (3) (2004), 429-446. | DOI | MR | Zbl

[3] S. Breuer - E.T. Onat, On recoverable work in linear viscoelasticity, Z. Angew. Math. Phys., 15 (1964), 12-21. | DOI | MR | Zbl

[4] C. Cattaneo, Sulla conduzione del calore, Atti Sem. Mat. Fis. Univ. Modena, 3 (1948), 83-101. | MR

[5] B. D. Coleman, Thermodynamics of materials with memory, Arch. Rational Mech. Anal., 17 (1964), 1-46. | DOI | MR

[6] B. D. Coleman - R. D. Owen, A mathematical foundation for thermodynamics, Arch. Rational Mech. Anal., 54 (1974), 1-104. | DOI | MR | Zbl

[7] W. A. Day, Reversibility, recoverable work and free energy in linear viscoelasticity, Quart. J. Mech. Appl. Math., 23 (1970), 1-15. | DOI | MR | Zbl

[8] M. Fabrizio - G. Gentili - D. W. Reynolds, On rigid heat conductors with memory, Int. J. Engng. Sci., 36 (1998), 765-782. | DOI | MR | Zbl

[9] M. Fabrizio - C. Giorgi - A. Morro, Free energies and dissipation properties for systems with memory, Arch. Rational Mech. Anal., 125 (1994), 341-373. | DOI | MR | Zbl

[10] M. Fabrizio - J. M. Golden, Maximum and minimum free energies for a linear viscoelastic material, Quart. Appl. Math., LX (2) (2002), 341-381. | DOI | MR | Zbl

[11] M. Fabrizio - A. Morro, Mathematical problems in linear viscoelasticity, SIAM, Philadelphia, 1992. | DOI | MR | Zbl

[12] G. Gentili, Maximum recoverable work, minimum free energy and state space in linear viscoelasticity, Quart. Appl. Math., LX (1) (2002), 153-182. | DOI | MR | Zbl

[13] C. Giorgi - G. Gentili, Thermodynamic properties and stability for the heat flux equation with linear memory, Quart. Appl. Math., LVIII (51) 2 (1993), 343-362. | DOI | MR | Zbl

[14] J. M. Golden, Free energy in the frequency domain: the scalar case, Quart. Appl. Math., LVIII (1) (2000), 127-150. | DOI | MR | Zbl

[15] M. E. Gurtin - A. C. Pipkin, A general theory of heat conduction with finite wave speeds, Arch. Rational Mech. Anal., 31 (1968), 113-126. | DOI | MR | Zbl

[16] M. Mccarty, Constitutive equations for thermomechanical materials with memory, Int. J. Engng. Sci., 8 (1970), 467-126.

[17] N. I. Muskhelishvili, Singular Integral Equations, Noordhoff, Groningen, 1953. | MR

[18] W. Noll, A new mathematical theory of simple materials, Arch. Rational Mech. Anal., 48 (1972), 1-50. | DOI | MR | Zbl

[19] J. W. Nunziato, On heat conduction in materials with memory, Quart. Appl. Math., 29 (1971), 187-204. | DOI | MR | Zbl