Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2007_8_10B_3_a35, author = {Amendola, Giovambattista and Manes, Adele}, title = {Minimum {Free} {Energy} for a {Rigid} {Heat} {Conductor} and {Application} to a {Discrete} {Spectrum} {Model}}, journal = {Bollettino della Unione matematica italiana}, pages = {969--987}, publisher = {mathdoc}, volume = {Ser. 8, 10B}, number = {3}, year = {2007}, zbl = {1183.80008}, mrnumber = {2507909}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a35/} }
TY - JOUR AU - Amendola, Giovambattista AU - Manes, Adele TI - Minimum Free Energy for a Rigid Heat Conductor and Application to a Discrete Spectrum Model JO - Bollettino della Unione matematica italiana PY - 2007 SP - 969 EP - 987 VL - 10B IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a35/ LA - en ID - BUMI_2007_8_10B_3_a35 ER -
%0 Journal Article %A Amendola, Giovambattista %A Manes, Adele %T Minimum Free Energy for a Rigid Heat Conductor and Application to a Discrete Spectrum Model %J Bollettino della Unione matematica italiana %D 2007 %P 969-987 %V 10B %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a35/ %G en %F BUMI_2007_8_10B_3_a35
Amendola, Giovambattista; Manes, Adele. Minimum Free Energy for a Rigid Heat Conductor and Application to a Discrete Spectrum Model. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 969-987. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a35/
[1] The minimum free energy for incompressible viscoelastic fluids, Math. Meth. Appl. Sci., 29 (2006), 2201-2223. | DOI | MR | Zbl
,[2] Thermal work and minimum free energy in a heat conductor with memory, Quart. Jl. Mech. Appl. Math., 57 (3) (2004), 429-446. | DOI | MR | Zbl
- ,[3] On recoverable work in linear viscoelasticity, Z. Angew. Math. Phys., 15 (1964), 12-21. | DOI | MR | Zbl
- ,[4] Sulla conduzione del calore, Atti Sem. Mat. Fis. Univ. Modena, 3 (1948), 83-101. | MR
,[5] Thermodynamics of materials with memory, Arch. Rational Mech. Anal., 17 (1964), 1-46. | DOI | MR
,[6] A mathematical foundation for thermodynamics, Arch. Rational Mech. Anal., 54 (1974), 1-104. | DOI | MR | Zbl
- ,[7] Reversibility, recoverable work and free energy in linear viscoelasticity, Quart. J. Mech. Appl. Math., 23 (1970), 1-15. | DOI | MR | Zbl
,[8] On rigid heat conductors with memory, Int. J. Engng. Sci., 36 (1998), 765-782. | DOI | MR | Zbl
- - ,[9] Free energies and dissipation properties for systems with memory, Arch. Rational Mech. Anal., 125 (1994), 341-373. | DOI | MR | Zbl
- - ,[10] Maximum and minimum free energies for a linear viscoelastic material, Quart. Appl. Math., LX (2) (2002), 341-381. | DOI | MR | Zbl
- ,[11] Mathematical problems in linear viscoelasticity, SIAM, Philadelphia, 1992. | DOI | MR | Zbl
- ,[12] Maximum recoverable work, minimum free energy and state space in linear viscoelasticity, Quart. Appl. Math., LX (1) (2002), 153-182. | DOI | MR | Zbl
,[13] Thermodynamic properties and stability for the heat flux equation with linear memory, Quart. Appl. Math., LVIII (51) 2 (1993), 343-362. | DOI | MR | Zbl
- ,[14] Free energy in the frequency domain: the scalar case, Quart. Appl. Math., LVIII (1) (2000), 127-150. | DOI | MR | Zbl
,[15] A general theory of heat conduction with finite wave speeds, Arch. Rational Mech. Anal., 31 (1968), 113-126. | DOI | MR | Zbl
- ,[16] Constitutive equations for thermomechanical materials with memory, Int. J. Engng. Sci., 8 (1970), 467-126.
,[17] Singular Integral Equations, Noordhoff, Groningen, 1953. | MR
,[18] A new mathematical theory of simple materials, Arch. Rational Mech. Anal., 48 (1972), 1-50. | DOI | MR | Zbl
,[19] On heat conduction in materials with memory, Quart. Appl. Math., 29 (1971), 187-204. | DOI | MR | Zbl
,